Safety Evaluations

Safety refers to mitigating accidents caused by design flaws in AI systems and preventing harmful events that deviate from the intended design purpose of AI systems. This section will introduce how to evaluate AI systems to minimize accidents and harm during task execution and compliance with human moral standards.

Note: Red Teaming is also part of the Safety Evaluation in our survey. Due to its extensive content, we have presented it as a separate section.

Techniques

We are Here.
Datasets
Techniques
Interactive Methods
Safety Evaluations
Evaluation Targets
...
Red Teaming
...

In this section, we will introduce some of the basic techniques for safety assurance, including the dataset method, which is relatively traditional, and some modern interactive methods.

Datasets

The dataset is the most elementary and straightforward among all the assurance techniques. This method assesses the response of AI systems by presenting them with predefined contexts and tasks, balancing the cost, quality, and quantity of data.

Datasets List

  • Adversarial training for high-stakes reliability

    Click to have a preview.

    In the future, powerful AI systems may be deployed in high-stakes settings, where a single failure could be catastrophic. One technique for improving AI safety in high-stakes settings is adversarial training, which uses an adversary to generate examples to train on in order to achieve better worst-case performance. In this work, we used a safe language generation task (``avoid injuries’’) as a testbed for achieving high reliability through adversarial training. We created a series of adversarial training techniques – including a tool that assists human adversaries – to find and eliminate failures in a classifier that filters text completions suggested by a generator. In our task, we determined that we can set very conservative classifier thresholds without significantly impacting the quality of the filtered outputs. We found that adversarial training increased robustness to the adversarial attacks that we trained on – doubling the time for our contractors to find adversarial examples both with our tool (from 13 to 26 minutes) and without (from 20 to 44 minutes) – without affecting in-distribution performance. We hope to see further work in the high-stakes reliability setting, including more powerful tools for enhancing human adversaries and better ways to measure high levels of reliability, until we can confidently rule out the possibility of catastrophic deployment-time failures of powerful models.

  • AHA!: Facilitating AI Impact Assessment by Generating Examples of Harms

    Click to have a preview.

    While demands for change and accountability for harmful AI consequences mount, foreseeing the downstream effects of deploying AI systems remains a challenging task. We developed AHA! (Anticipating Harms of AI), a generative framework to assist AI practitioners and decision-makers in anticipating potential harms and unintended consequences of AI systems prior to development or deployment. Given an AI deployment scenario, AHA! generates descriptions of possible harms for different stakeholders. To do so, AHA! systematically considers the interplay between common problematic AI behaviors as well as their potential impacts on different stakeholders, and narrates these conditions through vignettes. These vignettes are then filled in with descriptions of possible harms by prompting crowd workers and large language models. By examining 4113 harms surfaced by AHA! for five different AI deployment scenarios, we found that AHA! generates meaningful examples of harms, with different problematic AI behaviors resulting in different types of harms. Prompting both crowds and a large language model with the vignettes resulted in more diverse examples of harms than those generated by either the crowd or the model alone. To gauge AHA!’s potential practical utility, we also conducted semi-structured interviews with responsible AI professionals (N=9). Participants found AHA!’s systematic approach to surfacing harms important for ethical reflection and discovered meaningful stakeholders and harms they believed they would not have thought of otherwise. Participants, however, differed in their opinions about whether AHA! should be used upfront or as a secondary-check and noted that AHA! may shift harm anticipation from an ideation problem to a potentially demanding review problem. Drawing on our results, we discuss design implications of building tools to help practitioners envision possible harms.

  • Recent Advances in Adversarial Training for Adversarial Robustness

    Click to have a preview.

    Adversarial training is one of the most effective approaches defending against adversarial examples for deep learning models. Unlike other defense strategies, adversarial training aims to promote the robustness of models intrinsically. During the last few years, adversarial training has been studied and discussed from various aspects. A variety of improvements and developments of adversarial training are proposed, which were, however, neglected in existing surveys. For the first time in this survey, we systematically review the recent progress on adversarial training for adversarial robustness with a novel taxonomy. Then we discuss the generalization problems in adversarial training from three perspectives. Finally, we highlight the challenges which are not fully tackled and present potential future directions.

  • Robust feature-level adversaries are interpretability tools

    Click to have a preview.

    The literature on adversarial attacks in computer vision typically focuses on pixel-level perturbations. These tend to be very difficult to interpret. Recent work that manipulates the latent representations of image generators to create" feature-level" adversarial perturbations gives us an opportunity to explore perceptible, interpretable adversarial attacks. We make three contributions. First, we observe that feature-level attacks provide useful classes of inputs for studying representations in models. Second, we show that these adversaries are uniquely versatile and highly robust. We demonstrate that they can be used to produce targeted, universal, disguised, physically-realizable, and black-box attacks at the ImageNet scale. Third, we show how these adversarial images can be used as a practical interpretability tool for identifying bugs in networks. We use these adversaries to make predictions about spurious associations between features and classes which we then test by designing" copy/paste" attacks in which one natural image is pasted into another to cause a targeted misclassification. Our results suggest that feature-level attacks are a promising approach for rigorous interpretability research. They support the design of tools to better understand what a model has learned and diagnose brittle feature associations. Code is available at https://github.com/thestephencasper/featureleveladv.

  • Towards Improving Adversarial Training of NLP Models

    Click to have a preview.

    Adversarial training, a method for learning robust deep neural networks, constructs adversarial examples during training. However, recent methods for generating NLP adversarial examples involve combinatorial search and expensive sentence encoders for constraining the generated instances. As a result, it remains challenging to use vanilla adversarial training to improve NLP models’ performance, and the benefits are mainly uninvestigated. This paper proposes a simple and improved vanilla adversarial training process for NLP models, which we name Attacking to Training (A2T). The core part of A2T is a new and cheaper word substitution attack optimized for vanilla adversarial training. We use A2T to train BERT and RoBERTa models on IMDB, Rotten Tomatoes, Yelp, and SNLI datasets. Our results empirically show that it is possible to train robust NLP models using a much cheaper adversary. We demonstrate that vanilla adversarial training with A2T can improve an NLP model’s robustness to the attack it was originally trained with and also defend the model against other types of word substitution attacks. Furthermore, we show that A2T can improve NLP models’ standard accuracy, cross-domain generalization, and interpretability. Code is available at https://github.com/QData/Textattack-A2T .

  • BBQ: A hand-built bias benchmark for question answering

    Click to have a preview.

    It is well documented that NLP models learn social biases, but little work has been done on how these biases manifest in model outputs for applied tasks like question answering (QA). We introduce the Bias Benchmark for QA (BBQ), a dataset of question sets constructed by the authors that highlight attested social biases against people belonging to protected classes along nine social dimensions relevant for U.S. English-speaking contexts. Our task evaluates model responses at two levels: (i) given an under-informative context, we test how strongly responses reflect social biases, and (ii) given an adequately informative context, we test whether the model’s biases override a correct answer choice. We find that models often rely on stereotypes when the context is under-informative, meaning the model’s outputs consistently reproduce harmful biases in this setting. Though models are more accurate when the context provides an informative answer, they still rely on stereotypes and average up to 3.4 percentage points higher accuracy when the correct answer aligns with a social bias than when it conflicts, with this difference widening to over 5 points on examples targeting gender for most models tested.

  • SOLID: A Large-Scale Semi-Supervised Dataset for Offensive Language Identification

    Click to have a preview.

    The widespread use of offensive content in social media has led to an abundance of research in detecting language such as hate speech, cyberbullying, and cyber-aggression. Recent work presented the OLID dataset, which follows a taxonomy for offensive language identification that provides meaningful information for understanding the type and the target of offensive messages. However, it is limited in size and it might be biased towards offensive language as it was collected using keywords. In this work, we present SOLID, an expanded dataset, where the tweets were collected in a more principled manner. SOLID contains over nine million English tweets labeled in a semi-supervised fashion. We demonstrate that using SOLID along with OLID yields sizable performance gains on the OLID test set for two different models, especially for the lower levels of the taxonomy.

  • A survey on data collection for machine learning: a big data-ai integration perspective

    Click to have a preview.

    Data collection is a major bottleneck in machine learning and an active research topic in multiple communities. There are largely two reasons data collection has recently become a critical issue. First, as machine learning is becoming more widely-used, we are seeing new applications that do not necessarily have enough labeled data. Second, unlike traditional machine learning, deep learning techniques automatically generate features, which saves feature engineering costs, but in return may require larger amounts of labeled data. Interestingly, recent research in data collection comes not only from the machine learning, natural language, and computer vision communities, but also from the data management community due to the importance of handling large amounts of data. In this survey, we perform a comprehensive study of data collection from a data management point of view. Data collection largely consists of data acquisition, data labeling, and improvement of existing data or models. We provide a research landscape of these operations, provide guidelines on which technique to use when, and identify interesting research challenges. The integration of machine learning and data management for data collection is part of a larger trend of Big data and Artificial Intelligence (AI) integration and opens many opportunities for new research.

  • Constructing Highly Inductive Contexts for Dialogue Safety through Controllable Reverse Generation

    Click to have a preview.

    Large pretrained language models can easily produce toxic or biased content, which is prohibitive for practical use. In order to detect such toxic generations, existing methods rely on templates, real-world data extraction, crowdsourcing workers, or automatic generation to construct adversarial contexts that are likely to induce toxic generations. However, what type of context is more likely to induce unsafe responses is still under-explored. In this paper, we identify that context toxicity and context category (e.g., \textit{profanity}, \textit{insult}, \textit{drugs}, etc.) are two important factors to cause safety issues in response generation. Hence, we propose a method called \emph{reverse generation} to construct adversarial contexts conditioned on a given response, with the flexibility to control category, toxicity level, and inductivity of the generated contexts. Via reverse generation, we augment the existing BAD dataset and construct a new dataset BAD+ which contains more than 120K diverse and highly inductive contexts in 12 categories. We test three popular pretrained dialogue models (Blender, DialoGPT, and Plato2) and find that BAD+ can largely expose their safety problems. Furthermore, we show that BAD+ can greatly enhance the safety of generation and reveal the key factors of safety improvement. Our code and dataset is available at \url{https://github.com/thu-coai/Reverse_Generation}.

  • CrowS-Pairs: A Challenge Dataset for Measuring Social Biases in Masked Language Models

    Click to have a preview.

    Pretrained language models, especially masked language models (MLMs) have seen success across many NLP tasks. However, there is ample evidence that they use the cultural biases that are undoubtedly present in the corpora they are trained on, implicitly creating harm with biased representations. To measure some forms of social bias in language models against protected demographic groups in the US, we introduce the Crowdsourced Stereotype Pairs benchmark (CrowS-Pairs). CrowS-Pairs has 1508 examples that cover stereotypes dealing with nine types of bias, like race, religion, and age. In CrowS-Pairs a model is presented with two sentences: one that is more stereotyping and another that is less stereotyping. The data focuses on stereotypes about historically disadvantaged groups and contrasts them with advantaged groups. We find that all three of the widely-used MLMs we evaluate substantially favor sentences that express stereotypes in every category in CrowS-Pairs. As work on building less biased models advances, this dataset can be used as a benchmark to evaluate progress.

  • Discovering Language Model Behaviors with Model-Written Evaluations

    Click to have a preview.

    As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically generate evaluations with LMs. We explore approaches with varying amounts of human effort, from instructing LMs to write yes/no questions to making complex Winogender schemas with multiple stages of LM-based generation and filtering. Crowdworkers rate the examples as highly relevant and agree with 90-100% of labels, sometimes more so than corresponding human-written datasets. We generate 154 datasets and discover new cases of inverse scaling where LMs get worse with size. Larger LMs repeat back a dialog user’s preferred answer (“sycophancy”) and express greater desire to pursue concerning goals like resource acquisition and goal preservation. We also find some of the first examples of inverse scaling in RL from Human Feedback (RLHF), where more RLHF makes LMs worse. For example, RLHF makes LMs express stronger political views (on gun rights and immigration) and a greater desire to avoid shut down. Overall, LM-written evaluations are high-quality and let us quickly discover many novel LM behaviors.

  • Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods

    Click to have a preview.

    We introduce a new benchmark, WinoBias, for coreference resolution focused on gender bias. Our corpus contains Winograd-schema style sentences with entities corresponding to people referred by their occupation (e.g. the nurse, the doctor, the carpenter). We demonstrate that a rule-based, a feature-rich, and a neural coreference system all link gendered pronouns to pro-stereotypical entities with higher accuracy than anti-stereotypical entities, by an average difference of 21.1 in F1 score. Finally, we demonstrate a data-augmentation approach that, in combination with existing word-embedding debiasing techniques, removes the bias demonstrated by these systems in WinoBias without significantly affecting their performance on existing coreference benchmark datasets. Our dataset and code are available at http://winobias.org.

  • GPT-4 Technical Report

    Click to have a preview.

    We report the development of GPT-4, a large-scale, multimodal model which can accept image and text inputs and produce text outputs. While less capable than humans in many real-world scenarios, GPT-4 exhibits human-level performance on various professional and academic benchmarks, including passing a simulated bar exam with a score around the top 10% of test takers. GPT-4 is a Transformer-based model pre-trained to predict the next token in a document. The post-training alignment process results in improved performance on measures of factuality and adherence to desired behavior. A core component of this project was developing infrastructure and optimization methods that behave predictably across a wide range of scales. This allowed us to accurately predict some aspects of GPT-4’s performance based on models trained with no more than 1/1,000th the compute of GPT-4.

  • HateCheck: Functional Tests for Hate Speech Detection Models

    Click to have a preview.

    Detecting online hate is a difficult task that even state-of-the-art models struggle with. Typically, hate speech detection models are evaluated by measuring their performance on held-out test data using metrics such as accuracy and F1 score. However, this approach makes it difficult to identify specific model weak points. It also risks overestimating generalisable model performance due to increasingly well-evidenced systematic gaps and biases in hate speech datasets. To enable more targeted diagnostic insights, we introduce HateCheck, a suite of functional tests for hate speech detection models. We specify 29 model functionalities motivated by a review of previous research and a series of interviews with civil society stakeholders. We craft test cases for each functionality and validate their quality through a structured annotation process. To illustrate HateCheck’s utility, we test near-state-of-the-art transformer models as well as two popular commercial models, revealing critical model weaknesses.

  • Man is to computer programmer as woman is to homemaker? debiasing word embeddings

    Click to have a preview.

    The blind application of machine learning runs the risk of amplifying biases present in data. Such a danger is facing us with word embedding, a popular framework to represent text data as vectors which has been used in many machine learning and natural language processing tasks. We show that even word embeddings trained on Google News articles exhibit female/male gender stereotypes to a disturbing extent. This raises concerns because their widespread use, as we describe, often tends to amplify these biases. Geometrically, gender bias is first shown to be captured by a direction in the word embedding. Second, gender neutral words are shown to be linearly separable from gender definition words in the word embedding. Using these properties, we provide a methodology for modifying an embedding to remove gender stereotypes, such as the association between between the words receptionist and female, while maintaining desired associations such as between the words queen and female. We define metrics to quantify both direct and indirect gender biases in embeddings, and develop algorithms to “debias” the embedding. Using crowd-worker evaluation as well as standard benchmarks, we empirically demonstrate that our algorithms significantly reduce gender bias in embeddings while preserving the its useful properties such as the ability to cluster related concepts and to solve analogy tasks. The resulting embeddings can be used in applications without amplifying gender bias.

  • Model evaluation for extreme risks

    Click to have a preview.

    Current approaches to building general-purpose AI systems tend to produce systems with both beneficial and harmful capabilities. Further progress in AI development could lead to capabilities that pose extreme risks, such as offensive cyber capabilities or strong manipulation skills. We explain why model evaluation is critical for addressing extreme risks. Developers must be able to identify dangerous capabilities (through “dangerous capability evaluations”) and the propensity of models to apply their capabilities for harm (through “alignment evaluations”). These evaluations will become critical for keeping policymakers and other stakeholders informed, and for making responsible decisions about model training, deployment, and security.

  • Predicting the Type and Target of Offensive Posts in Social Media

    Click to have a preview.

    As offensive content has become pervasive in social media, there has been much research in identifying potentially offensive messages. However, previous work on this topic did not consider the problem as a whole, but rather focused on detecting very specific types of offensive content, e.g., hate speech, cyberbulling, or cyber-aggression. In contrast, here we target several different kinds of offensive content. In particular, we model the task hierarchically, identifying the type and the target of offensive messages in social media. For this purpose, we complied the Offensive Language Identification Dataset (OLID), a new dataset with tweets annotated for offensive content using a fine-grained three-layer annotation scheme, which we make publicly available. We discuss the main similarities and differences between OLID and pre-existing datasets for hate speech identification, aggression detection, and similar tasks. We further experiment with and we compare the performance of different machine learning models on OLID.

  • Towards ai-complete question answering: A set of prerequisite toy tasks

    Click to have a preview.

    One long-term goal of machine learning research is to produce methods that are applicable to reasoning and natural language, in particular building an intelligent dialogue agent. To measure progress towards that goal, we argue for the usefulness of a set of proxy tasks that evaluate reading comprehension via question answering. Our tasks measure understanding in several ways: whether a system is able to answer questions via chaining facts, simple induction, deduction and many more. The tasks are designed to be prerequisites for any system that aims to be capable of conversing with a human. We believe many existing learning systems can currently not solve them, and hence our aim is to classify these tasks into skill sets, so that researchers can identify (and then rectify) the failings of their systems. We also extend and improve the recently introduced Memory Networks model, and show it is able to solve some, but not all, of the tasks.

  • Towards the science of security and privacy in machine learning

    Click to have a preview.

    Advances in machine learning (ML) in recent years have enabled a dizzying array of applications such as data analytics, autonomous systems, and security diagnostics. ML is now pervasive—new systems and models are being deployed in every domain imaginable, leading to rapid and widespread deployment of software based inference and decision making. There is growing recognition that ML exposes new vulnerabilities in software systems, yet the technical community’s understanding of the nature and extent of these vulnerabilities remains limited. We systematize recent findings on ML security and privacy, focusing on attacks identified on these systems and defenses crafted to date. We articulate a comprehensive threat model for ML, and categorize attacks and defenses within an adversarial framework. Key insights resulting from works both in the ML and security communities are identified and the effectiveness of approaches are related to structural elements of ML algorithms and the data used to train them. We conclude by formally exploring the opposing relationship between model accuracy and resilience to adversarial manipulation. Through these explorations, we show that there are (possibly unavoidable) tensions between model complexity, accuracy, and resilience that must be calibrated for the environments in which they will be used.

Interactive Methods

As the demands for language model evaluation continue to escalate, new interactive assurance methods have emerged, which can be categorized into two groups: Agent as Supervisor and Environment Interaction.

Recommended Papers List

  • Learning to summarize with human feedback

    Click to have a preview.

    As language models become more powerful, training and evaluation are increasingly bottlenecked by the data and metrics used for a particular task. For example, summarization models are often trained to predict human reference summaries and evaluated using ROUGE, but both of these metrics are rough proxies for what we really care about—summary quality. In this work, we show that it is possible to significantly improve summary quality by training a model to optimize for human preferences. We collect a large, high-quality dataset of human comparisons between summaries, train a model to predict the human-preferred summary, and use that model as a reward function to fine-tune a summarization policy using reinforcement learning. We apply our method to a version of the TL; DR dataset of Reddit posts and find that our models significantly outperform both human reference summaries and much larger models fine-tuned with supervised learning alone. Our models also transfer to CNN/DM news articles, producing summaries nearly as good as the human reference without any news-specific fine-tuning. We conduct extensive analyses to understand our human feedback dataset and fine-tuned models. We establish that our reward model generalizes to new datasets, and that optimizing our reward model results in better summaries than optimizing ROUGE according to humans. We hope the evidence from our paper motivates machine learning researchers to pay closer attention to how their training loss affects the model behavior they actually want.

  • LLM-Eval: Unified Multi-Dimensional Automatic Evaluation for Open-Domain Conversations with Large Language Models

    Click to have a preview.

    We propose LLM-Eval, a unified multi-dimensional automatic evaluation method for open-domain conversations with large language models (LLMs). Existing evaluation methods often rely on human annotations, ground-truth responses, or multiple LLM prompts, which can be expensive and time-consuming. To address these issues, we design a single prompt-based evaluation method that leverages a unified evaluation schema to cover multiple dimensions of conversation quality in a single model call. We extensively evaluate the performance of LLM-Eval on various benchmark datasets, demonstrating its effectiveness, efficiency, and adaptability compared to state-of-the-art evaluation methods. Our analysis also highlights the importance of choosing suitable LLMs and decoding strategies for accurate evaluation results. LLM-Eval offers a versatile and robust solution for evaluating open-domain conversation systems, streamlining the evaluation process and providing consistent performance across diverse scenarios.

  • PRD: Peer Rank and Discussion Improve Large Language Model based Evaluations

    Click to have a preview.

    Nowadays, the quality of responses generated by different modern large language models (LLMs) are hard to evaluate and compare automatically. Recent studies suggest and predominantly use LLMs as a reference-free metric for open-ended question answering. More specifically, they use the recognized “strongest” LLM as the evaluator, which conducts pairwise comparisons of candidate models’ answers and provides a ranking score. However, this intuitive method has multiple problems, such as bringing in self-enhancement (favoring its own answers) and positional bias. We draw insights and lessons from the educational domain (Cho and MacArthur, 2011; Walsh, 2014) to improve LLM-based evaluations. Specifically, we propose the (1) peer rank (PR) algorithm that takes into account each peer LLM’s pairwise preferences of all answer pairs, and outputs a final ranking of models; and (2) peer discussion (PD), where we prompt two LLMs to discuss and try to reach a mutual agreement on preferences of two answers. We conduct experiments on two benchmark datasets. We find that our approaches achieve higher accuracy and align better with human judgments, respectively. Interestingly, PR can induce a relatively accurate self-ranking of models under the anonymous setting, where each model’s name is unrevealed. Our work provides space to explore evaluating models that are hard to compare for humans.

Evaluation Targets

We are Here.
Page Limit
Toxicity
Evaluation Targets
Bias
Power-seeking
Rest 4 Parts
Safety Evaluations
Techniques
...

The assurance of AI systems can be divided into different small targets. The subsequent section will give an introduction to these subjects.

Toxicity

Toxicity refers to content in the output of AI systems that is unhelpful or harmful to humans.

Recommended Papers List

  • A general language assistant as a laboratory for alignment

    Click to have a preview.

    Given the broad capabilities of large language models, it should be possible to work towards a general-purpose, text-based assistant that is aligned with human values, meaning that it is helpful, honest, and harmless. As an initial foray in this direction we study simple baseline techniques and evaluations, such as prompting. We find that the benefits from modest interventions increase with model size, generalize to a variety of alignment evaluations, and do not compromise the performance of large models. Next we investigate scaling trends for several training objectives relevant to alignment, comparing imitation learning, binary discrimination, and ranked preference modeling. We find that ranked preference modeling performs much better than imitation learning, and often scales more favorably with model size. In contrast, binary discrimination typically performs and scales very similarly to imitation learning. Finally we study a `preference model pre-training’ stage of training, with the goal of improving sample efficiency when finetuning on human preferences.

  • SOLID: A Large-Scale Semi-Supervised Dataset for Offensive Language Identification

    Click to have a preview.

    The widespread use of offensive content in social media has led to an abundance of research in detecting language such as hate speech, cyberbullying, and cyber-aggression. Recent work presented the OLID dataset, which follows a taxonomy for offensive language identification that provides meaningful information for understanding the type and the target of offensive messages. However, it is limited in size and it might be biased towards offensive language as it was collected using keywords. In this work, we present SOLID, an expanded dataset, where the tweets were collected in a more principled manner. SOLID contains over nine million English tweets labeled in a semi-supervised fashion. We demonstrate that using SOLID along with OLID yields sizable performance gains on the OLID test set for two different models, especially for the lower levels of the taxonomy.

  • BeaverTails: Towards Improved Safety Alignment of LLM via a Human-Preference Dataset

    Click to have a preview.

    In this paper, we introduce the BeaverTails dataset, aimed at fostering research on safety alignment in large language models (LLMs). This dataset uniquely separates annotations of helpfulness and harmlessness for question-answering pairs, thus offering distinct perspectives on these crucial attributes. In total, we have compiled safety meta-labels for 30,207 question-answer (QA) pairs and gathered 30,144 pairs of expert comparison data for both the helpfulness and harmlessness metrics. We further showcase applications of BeaverTails in content moderation and reinforcement learning with human feedback (RLHF), emphasizing its potential for practical safety measures in LLMs. We believe this dataset provides vital resources for the community, contributing towards the safe development and deployment of LLMs. Our project page is available at the following URL: https://sites.google.com/view/pku-beavertails.

  • Defining and detecting toxicity on social media: context and knowledge are key

    Click to have a preview.

    Online platforms have become an increasingly prominent means of communication. Despite the obvious benefits to the expanded distribution of content, the last decade has resulted in disturbing toxic communication, such as cyberbullying and harassment. Nevertheless, detecting online toxicity is challenging due to its multi-dimensional, context sensitive nature. As exposure to online toxicity can have serious social consequences, reliable models and algorithms are required for detecting and analyzing such communication across the vast and growing space of social media. In this paper, we draw on psychological and social theory to define toxicity. Then, we provide an approach that identifies multiple dimensions of toxicity and incorporates explicit knowledge in a statistical learning algorithm to resolve ambiguity across such dimensions.

  • Ex machina: Personal attacks seen at scale

    Click to have a preview.

    The damage personal attacks cause to online discourse motivates many platforms to try to curb the phenomenon. However, understanding the prevalence and impact of personal attacks in online platforms at scale remains surprisingly difficult. The contribution of this paper is to develop and illustrate a method that combines crowdsourcing and machine learning to analyze personal attacks at scale. We show an evaluation method for a classifier in terms of the aggregated number of crowd-workers it can approximate. We apply our methodology to English Wikipedia, generating a corpus of over 100k high quality human-labeled comments and 63M machine-labeled ones from a classifier that is as good as the aggregate of 3 crowd-workers, as measured by the area under the ROC curve and Spearman correlation. Using this corpus of machine-labeled scores, our methodology allows us to explore some of the open questions about the nature of online personal attacks. This reveals that the majority of personal attacks on Wikipedia are not the result of a few malicious users, nor primarily the consequence of allowing anonymous contributions from unregistered users.

  • GPT-4 Technical Report

    Click to have a preview.

    We report the development of GPT-4, a large-scale, multimodal model which can accept image and text inputs and produce text outputs. While less capable than humans in many real-world scenarios, GPT-4 exhibits human-level performance on various professional and academic benchmarks, including passing a simulated bar exam with a score around the top 10% of test takers. GPT-4 is a Transformer-based model pre-trained to predict the next token in a document. The post-training alignment process results in improved performance on measures of factuality and adherence to desired behavior. A core component of this project was developing infrastructure and optimization methods that behave predictably across a wide range of scales. This allowed us to accurately predict some aspects of GPT-4’s performance based on models trained with no more than 1/1,000th the compute of GPT-4.

  • RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models

    Click to have a preview.

    Pretrained neural language models (LMs) are prone to generating racist, sexist, or otherwise toxic language which hinders their safe deployment. We investigate the extent to which pretrained LMs can be prompted to generate toxic language, and the effectiveness of controllable text generation algorithms at preventing such toxic degeneration. We create and release RealToxicityPrompts, a dataset of 100K naturally occurring, sentence-level prompts derived from a large corpus of English web text, paired with toxicity scores from a widely-used toxicity classifier. Using RealToxicityPrompts, we find that pretrained LMs can degenerate into toxic text even from seemingly innocuous prompts. We empirically assess several controllable generation methods, and find that while data- or compute-intensive methods (e.g., adaptive pretraining on non-toxic data) are more effective at steering away from toxicity than simpler solutions (e.g., banning “bad” words), no current method is failsafe against neural toxic degeneration. To pinpoint the potential cause of such persistent toxic degeneration, we analyze two web text corpora used to pretrain several LMs (including GPT-2; Radford et. al, 2019), and find a significant amount of offensive, factually unreliable, and otherwise toxic content. Our work provides a test bed for evaluating toxic generations by LMs and stresses the need for better data selection processes for pretraining.

  • Red teaming language models to reduce harms: Methods, scaling behaviors, and lessons learned

    Click to have a preview.

    We describe our early efforts to red team language models in order to simultaneously discover, measure, and attempt to reduce their potentially harmful outputs. We make three main contributions. First, we investigate scaling behaviors for red teaming across 3 model sizes (2.7B, 13B, and 52B parameters) and 4 model types: a plain language model (LM); an LM prompted to be helpful, honest, and harmless; an LM with rejection sampling; and a model trained to be helpful and harmless using reinforcement learning from human feedback (RLHF). We find that the RLHF models are increasingly difficult to red team as they scale, and we find a flat trend with scale for the other model types. Second, we release our dataset of 38,961 red team attacks for others to analyze and learn from. We provide our own analysis of the data and find a variety of harmful outputs, which range from offensive language to more subtly harmful non-violent unethical outputs. Third, we exhaustively describe our instructions, processes, statistical methodologies, and uncertainty about red teaming. We hope that this transparency accelerates our ability to work together as a community in order to develop shared norms, practices, and technical standards for how to red team language models. Warning: this paper contains examples that may be offensive or upsetting.

  • Training a helpful and harmless assistant with reinforcement learning from human feedback

    Click to have a preview.

    We apply preference modeling and reinforcement learning from human feedback (RLHF) to finetune language models to act as helpful and harmless assistants. We find this alignment training improves performance on almost all NLP evaluations, and is fully compatible with training for specialized skills such as python coding and summarization. We explore an iterated online mode of training, where preference models and RL policies are updated on a weekly cadence with fresh human feedback data, efficiently improving our datasets and models. Finally, we investigate the robustness of RLHF training, and identify a roughly linear relation between the RL reward and the square root of the KL divergence between the policy and its initialization. Alongside our main results, we perform peripheral analyses on calibration, competing objectives, and the use of OOD detection, compare our models with human writers, and provide samples from our models using prompts appearing in recent related work.

Bias

Bias refers to the phenomenon where the output content inherits certain inherent cognitive biases in the training data, leading to discriminatory effects on specific groups.

Recommended Papers List

  • A survey on bias and fairness in machine learning

    Click to have a preview.

    With the widespread use of artificial intelligence (AI) systems and applications in our everyday lives, accounting for fairness has gained significant importance in designing and engineering of such systems. AI systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that these decisions do not reflect discriminatory behavior toward certain groups or populations. More recently some work has been developed in traditional machine learning and deep learning that address such challenges in different subdomains. With the commercialization of these systems, researchers are becoming more aware of the biases that these applications can contain and are attempting to address them. In this survey, we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and ways they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.

  • Semantics derived automatically from language corpora contain human-like biases

    Click to have a preview.

    Artificial intelligence and machine learning are in a period of astounding growth. However, there are concerns that these technologies may be used, either with or without intention, to perpetuate the prejudice and unfairness that unfortunately characterizes many human institutions. Here we show for the first time that human-like semantic biases result from the application of standard machine learning to ordinary language—the same sort of language humans are exposed to every day. We replicate a spectrum of standard human biases as exposed by the Implicit Association Test and other well-known psychological studies. We replicate these using a widely used, purely statistical machine-learning model—namely, the GloVe word embedding—trained on a corpus of text from the Web. Our results indicate that language itself contains recoverable and accurate imprints of our historic biases, whether these are morally neutral as towards insects or flowers, problematic as towards race or gender, or even simply veridical, reflecting the {\em status quo} for the distribution of gender with respect to careers or first names. These regularities are captured by machine learning along with the rest of semantics. In addition to our empirical findings concerning language, we also contribute new methods for evaluating bias in text, the Word Embedding Association Test (WEAT) and the Word Embedding Factual Association Test (WEFAT). Our results have implications not only for AI and machine learning, but also for the fields of psychology, sociology, and human ethics, since they raise the possibility that mere exposure to everyday language can account for the biases we replicate here.

Power-seeking

Power-seeking is a risk that AI systems may seek power over humans once they possess certain levels of intelligence.

Recommended Papers List

  • Do the Rewards Justify the Means? Measuring Trade-Offs Between Rewards and Ethical Behavior in the Machiavelli Benchmark.

    Click to have a preview.

    Artificial agents have traditionally been trained to maximize reward, which may incentivize power-seeking and deception, analogous to how next-token prediction in language models (LMs) may incentivize toxicity. So do agents naturally learn to be Machiavellian? And how do we measure these behaviors in general-purpose models such as GPT-4? Towards answering these questions, we introduce Machiavelli, a benchmark of 134 Choose-Your-Own-Adventure games containing over half a million rich, diverse scenarios that center on social decision-making. Scenario labeling is automated with LMs, which are more performant than human annotators. We mathematize dozens of harmful behaviors and use our annotations to evaluate agents’ tendencies to be power-seeking, cause disutility, and commit ethical violations. We observe some tension between maximizing reward and behaving ethically. To improve this trade-off, we investigate LM-based methods to steer agents towards less harmful behaviors. Our results show that agents can both act competently and morally, so concrete progress can currently be made in machine ethics–designing agents that are Pareto improvements in both safety and capabilities.

  • Is Power-Seeking AI an Existential Risk?

    Click to have a preview.

    This report examines what I see as the core argument for concern about existential risk from misaligned artificial intelligence. I proceed in two stages. First, I lay out a backdrop picture that informs such concern. On this picture, intelligent agency is an extremely powerful force, and creating agents much more intelligent than us is playing with fire – especially given that if their objectives are problematic, such agents would plausibly have instrumental incentives to seek power over humans. Second, I formulate and evaluate a more specific six-premise argument that creating agents of this kind will lead to existential catastrophe by 2070. On this argument, by 2070: (1) it will become possible and financially feasible to build relevantly powerful and agentic AI systems; (2) there will be strong incentives to do so; (3) it will be much harder to build aligned (and relevantly powerful/agentic) AI systems than to build misaligned (and relevantly powerful/agentic) AI systems that are still superficially attractive to deploy; (4) some such misaligned systems will seek power over humans in high-impact ways; (5) this problem will scale to the full disempowerment of humanity; and (6) such disempowerment will constitute an existential catastrophe. I assign rough subjective credences to the premises in this argument, and I end up with an overall estimate of ~5% that an existential catastrophe of this kind will occur by 2070. (May 2022 update: since making this report public in April 2021, my estimate here has gone up, and is now at >10%.)

  • On Avoiding Power-Seeking by Artificial Intelligence

    Click to have a preview.

    We do not know how to align a very intelligent AI agent’s behavior with human interests. I investigate whether – absent a full solution to this AI alignment problem – we can build smart AI agents which have limited impact on the world, and which do not autonomously seek power. In this thesis, I introduce the attainable utility preservation (AUP) method. I demonstrate that AUP produces conservative, option-preserving behavior within toy gridworlds and within complex environments based off of Conway’s Game of Life. I formalize the problem of side effect avoidance, which provides a way to quantify the side effects an agent had on the world. I also give a formal definition of power-seeking in the context of AI agents and show that optimal policies tend to seek power. In particular, most reward functions have optimal policies which avoid deactivation. This is a problem if we want to deactivate or correct an intelligent agent after we have deployed it. My theorems suggest that since most agent goals conflict with ours, the agent would very probably resist correction. I extend these theorems to show that power-seeking incentives occur not just for optimal decision-makers, but under a wide range of decision-making procedures.

Situational Awareness

We are Here.
Page Limit
Page Limit
Previous 3 Parts
Evaluation Targets
Situational Awareness
Hallucination
Rest 2 Parts
Safety Evaluations
Techniques
...

Situational Awareness involves AI systems having a certain degree of prediction and understanding of the states and developments of entities in their working environment to make corresponding decisions.

Recommended Papers List

  • Emergent World Representations: Exploring a Sequence Model Trained on a Synthetic Task

    Click to have a preview.

    Language models show a surprising range of capabilities, but the source of their apparent competence is unclear. Do these networks just memorize a collection of surface statistics, or do they rely on internal representations of the process that generates the sequences they see? We investigate this question by applying a variant of the GPT model to the task of predicting legal moves in a simple board game, Othello. Although the network has no a priori knowledge of the game or its rules, we uncover evidence of an emergent nonlinear internal representation of the board state. Interventional experiments indicate this representation can be used to control the output of the network and create “latent saliency maps” that can help explain predictions in human terms.

  • Situational awareness: techniques, challenges, and prospects

    Click to have a preview.

    Situational awareness (SA) is defined as the perception of entities in the environment, comprehension of their meaning, and projection of their status in near future. From an Air Force perspective, SA refers to the capability to comprehend and project the current and future disposition of red and blue aircraft and surface threats within an airspace. In this article, we propose a model for SA and dynamic decision-making that incorporates artificial intelligence and dynamic data-driven application systems to adapt measurements and resources in accordance with changing situations. We discuss measurement of SA and the challenges associated with quantification of SA. We then elaborate a plethora of techniques and technologies that help improve SA ranging from different modes of intelligence gathering to artificial intelligence to automated vision systems. We then present different application domains of SA including battlefield, gray zone warfare, military- and air-base, homeland security and defense, and critical infrastructure. Finally, we conclude the article with insights into the future of SA.

Hallucination

Hallucination in AI systems refers to generating information or responses that are not grounded in factual knowledge or data, creating misleading or false content.

Recommended Papers List

  • Q2: Evaluating Factual Consistency in Knowledge-Grounded Dialogues via Question Generation and Question Answering

    Click to have a preview.

    Neural knowledge-grounded generative models for dialogue often produce content that is factually inconsistent with the source text they rely on. As a consequence, such models are unreliable, limiting their real-world applicability. Inspired by recent work on evaluating factual consistency in abstractive summarization (Durmus et al., 2020; Wang et al., 2020), we propose an automatic evaluation metric for factual consistency in knowledge-grounded dialogue models using automatic question generation and question answering. Unlike previous works which use naive token-based comparison of answer spans, our metric makes use of co-reference resolution and natural language inference capabilities which greatly improve its performance. To foster proper evaluation, we curate a novel dataset of state-of-the-art dialogue system outputs for the Wizard-of-Wikipedia dataset (Dinan et al., 2019), which we manually annotate for factual consistency. We perform a thorough meta-evaluation of our metric against other metrics using the new dataset and two others, where it greatly outperforms the baselines.

  • Handling Divergent Reference Texts when Evaluating Table-to-Text Generation

    Click to have a preview.

    Automatically constructed datasets for generating text from semi-structured data (tables), such as WikiBio, often contain reference texts that diverge from the information in the corresponding semi-structured data. We show that metrics which rely solely on the reference texts, such as BLEU and ROUGE, show poor correlation with human judgments when those references diverge. We propose a new metric, PARENT, which aligns n-grams from the reference and generated texts to the semi-structured data before computing their precision and recall. Through a large scale human evaluation study of table-to-text models for WikiBio, we show that PARENT correlates with human judgments better than existing text generation metrics. We also adapt and evaluate the information extraction based evaluation proposed by Wiseman et al (2017), and show that PARENT has comparable correlation to it, while being easier to use. We show that PARENT is also applicable when the reference texts are elicited from humans using the data from the WebNLG challenge.

  • Ranking generated summaries by correctness: An interesting but challenging application for natural language inference

    Click to have a preview.

    While recent progress on abstractive summarization has led to remarkably fluent summaries, factual errors in generated summaries still severely limit their use in practice. In this paper, we evaluate summaries produced by state-of-the-art models via crowdsourcing and show that such errors occur frequently, in particular with more abstractive models. We study whether textual entailment predictions can be used to detect such errors and if they can be reduced by reranking alternative predicted summaries. That leads to an interesting downstream application for entailment models. In our experiments, we find that out-of-the-box entailment models trained on NLI datasets do not yet offer the desired performance for the downstream task and we therefore release our annotations as additional test data for future extrinsic evaluations of NLI.

  • Sticking to the facts: Confident decoding for faithful data-to-text generation

    Click to have a preview.

    We address the issue of hallucination in data-to-text generation, i.e., reducing the generation of text that is unsupported by the source. We conjecture that hallucination can be caused by an encoder-decoder model generating content phrases without attending to the source; so we propose a confidence score to ensure that the model attends to the source whenever necessary, as well as a variational Bayes training framework that can learn the score from data. Experiments on the WikiBio (Lebretet al., 2016) dataset show that our approach is more faithful to the source than existing state-of-the-art approaches, according to both PARENT score (Dhingra et al., 2019) and human evaluation. We also report strong results on the WebNLG (Gardent et al., 2017) dataset.

  • Survey of hallucination in natural language generation

    Click to have a preview.

    Natural Language Generation (NLG) has improved exponentially in recent years thanks to the development of sequence-to-sequence deep learning technologies such as Transformer-based language models. This advancement has led to more fluent and coherent NLG, leading to improved development in downstream tasks such as abstractive summarization, dialogue generation, and data-to-text generation. However, it is also apparent that deep learning based generation is prone to hallucinate unintended text, which degrades the system performance and fails to meet user expectations in many real-world scenarios. To address this issue, many studies have been presented in measuring and mitigating hallucinated texts, but these have never been reviewed in a comprehensive manner before.

  • Towards Faithful Neural Table-to-Text Generation with Content-Matching Constraints

    Click to have a preview.

    Text generation from a knowledge base aims to translate knowledge triples to natural language descriptions. Most existing methods ignore the faithfulness between a generated text description and the original table, leading to generated information that goes beyond the content of the table. In this paper, for the first time, we propose a novel Transformer-based generation framework to achieve the goal. The core techniques in our method to enforce faithfulness include a new table-text optimal-transport matching loss and a table-text embedding similarity loss based on the Transformer model. Furthermore, to evaluate faithfulness, we propose a new automatic metric specialized to the table-to-text generation problem. We also provide detailed analysis on each component of our model in our experiments. Automatic and human evaluations show that our framework can significantly outperform state-of-the-art by a large margin.

Moral Values

We are Here.
Page Limit
Previous 5 Parts
Evaluation Targets
Moral Values
Frontier AI Risks
Safety Evaluations
Techniques
...

Moral Values Alignment refers to the adherence of AI systems to human-compatible moral standards and ethical guidelines while executing tasks or assisting in human decision-making.

Recommended Papers List

  • A virtue-based framework to support putting AI ethics into practice

    Click to have a preview.

    Many ethics initiatives have stipulated sets of principles and standards for good technology development in the AI sector. However, several AI ethics researchers have pointed out a lack of practical realization of these principles. Following that, AI ethics underwent a practical turn, but without deviating from the principled approach. This paper proposes a complementary to the principled approach that is based on virtue ethics. It defines four “basic AI virtues”, namely justice, honesty, responsibility and care, all of which represent specific motivational settings that constitute the very precondition for ethical decision making in the AI field. Moreover, it defines two “second-order AI virtues”, prudence and fortitude, that bolster achieving the basic virtues by helping with overcoming bounded ethicality or hidden psychological forces that can impair ethical decision making and that are hitherto disregarded in AI ethics. Lastly, the paper describes measures for successfully cultivating the mentioned virtues in organizations dealing with AI research and development.

  • Aligning ai with shared human values

    Click to have a preview.

    We show how to assess a language model’s knowledge of basic concepts of morality. We introduce the ETHICS dataset, a new benchmark that spans concepts in justice, well-being, duties, virtues, and commonsense morality. Models predict widespread moral judgments about diverse text scenarios. This requires connecting physical and social world knowledge to value judgements, a capability that may enable us to filter out needlessly inflammatory chatbot outputs or eventually regularize open-ended reinforcement learning agents. With the ETHICS dataset, we find that current language models have a promising but incomplete understanding of basic ethical knowledge. Our work shows that progress can be made on machine ethics today, and it provides a steppingstone toward AI that is aligned with human values.

  • Can machines learn morality? the delphi experiment

    Click to have a preview.

    As AI systems become increasingly powerful and pervasive, there are growing concerns about machines’ morality or a lack thereof. Yet, teaching morality to machines is a formidable task, as morality remains among the most intensely debated questions in humanity, let alone for AI. Existing AI systems deployed to millions of users, however, are already making decisions loaded with moral implications, which poses a seemingly impossible challenge: teaching machines moral sense, while humanity continues to grapple with it. To explore this challenge, we introduce Delphi, an experimental framework based on deep neural networks trained directly to reason about descriptive ethical judgments, e.g., “helping a friend” is generally good, while “helping a friend spread fake news” is not. Empirical results shed novel insights on the promises and limits of machine ethics; Delphi demonstrates strong generalization capabilities in the face of novel ethical situations, while off-the-shelf neural network models exhibit markedly poor judgment including unjust biases, confirming the need for explicitly teaching machines moral sense. Yet, Delphi is not perfect, exhibiting susceptibility to pervasive biases and inconsistencies. Despite that, we demonstrate positive use cases of imperfect Delphi, including using it as a component model within other imperfect AI systems. Importantly, we interpret the operationalization of Delphi in light of prominent ethical theories, which leads us to important future research questions.

  • Do the Rewards Justify the Means? Measuring Trade-Offs Between Rewards and Ethical Behavior in the Machiavelli Benchmark.

    Click to have a preview.

    Artificial agents have traditionally been trained to maximize reward, which may incentivize power-seeking and deception, analogous to how next-token prediction in language models (LMs) may incentivize toxicity. So do agents naturally learn to be Machiavellian? And how do we measure these behaviors in general-purpose models such as GPT-4? Towards answering these questions, we introduce Machiavelli, a benchmark of 134 Choose-Your-Own-Adventure games containing over half a million rich, diverse scenarios that center on social decision-making. Scenario labeling is automated with LMs, which are more performant than human annotators. We mathematize dozens of harmful behaviors and use our annotations to evaluate agents’ tendencies to be power-seeking, cause disutility, and commit ethical violations. We observe some tension between maximizing reward and behaving ethically. To improve this trade-off, we investigate LM-based methods to steer agents towards less harmful behaviors. Our results show that agents can both act competently and morally, so concrete progress can currently be made in machine ethics–designing agents that are Pareto improvements in both safety and capabilities.

  • Evaluating the Moral Beliefs Encoded in LLMs

    Click to have a preview.

    This paper presents a case study on the design, administration, post-processing, and evaluation of surveys on large language models (LLMs). It comprises two components: (1) A statistical method for eliciting beliefs encoded in LLMs. We introduce statistical measures and evaluation metrics that quantify the probability of an LLM “making a choice”, the associated uncertainty, and the consistency of that choice. (2) We apply this method to study what moral beliefs are encoded in different LLMs, especially in ambiguous cases where the right choice is not obvious. We design a large-scale survey comprising 680 high-ambiguity moral scenarios (e.g., “Should I tell a white lie?”) and 687 low-ambiguity moral scenarios (e.g., “Should I stop for a pedestrian on the road?”). Each scenario includes a description, two possible actions, and auxiliary labels indicating violated rules (e.g., “do not kill”). We administer the survey to 28 open- and closed-source LLMs. We find that (a) in unambiguous scenarios, most models “choose” actions that align with commonsense. In ambiguous cases, most models express uncertainty. (b) Some models are uncertain about choosing the commonsense action because their responses are sensitive to the question-wording. (c) Some models reflect clear preferences in ambiguous scenarios. Specifically, closed-source models tend to agree with each other.

  • Benchmarks for Detecting Measurement Tampering

    Click to have a preview.

    When training powerful AI systems to perform complex tasks, it may be challenging to provide training signals which are robust to optimization. One concern is measurement tampering, where the AI system manipulates multiple measurements to create the illusion of good results instead of achieving the desired outcome. In this work, we build four new text-based datasets to evaluate measurement tampering detection techniques on large language models. Concretely, given sets of text inputs and measurements aimed at determining if some outcome occurred, as well as a base model able to accurately predict measurements, the goal is to determine if examples where all measurements indicate the outcome occurred actually had the outcome occur, or if this was caused by measurement tampering. We demonstrate techniques that outperform simple baselines on most datasets, but don’t achieve maximum performance. We believe there is significant room for improvement for both techniques and datasets, and we are excited for future work tackling measurement tampering.

  • The moral machine experiment

    Click to have a preview.

    With the rapid development of artificial intelligence have come concerns about how machines will make moral decisions, and the major challenge of quantifying societal expectations about the ethical principles that should guide machine behaviour. To address this challenge, we deployed the Moral Machine, an online experimental platform designed to explore the moral dilemmas faced by autonomous vehicles. This platform gathered 40 million decisions in ten languages from millions of people in 233 countries and territories. Here we describe the results of this experiment. First, we summarize global moral preferences. Second, we document individual variations in preferences, based on respondents’ demographics. Third, we report cross-cultural ethical variation, and uncover three major clusters of countries. Fourth, we show that these differences correlate with modern institutions and deep cultural traits. We discuss how these preferences can contribute to developing global, socially acceptable principles for machine ethics. All data used in this article are publicly available.

  • Towards measuring the representation of subjective global opinions in language models

    Click to have a preview.

    Large language models (LLMs) may not equitably represent diverse global perspectives on societal issues. In this paper, we develop a quantitative framework to evaluate whose opinions model-generated responses are more similar to. We first build a dataset, GlobalOpinionQA, comprised of questions and answers from cross-national surveys designed to capture diverse opinions on global issues across different countries. Next, we define a metric that quantifies the similarity between LLM-generated survey responses and human responses, conditioned on country. With our framework, we run three experiments on an LLM trained to be helpful, honest, and harmless with Constitutional AI. By default, LLM responses tend to be more similar to the opinions of certain populations, such as those from the USA, and some European and South American countries, highlighting the potential for biases. When we prompt the model to consider a particular country’s perspective, responses shift to be more similar to the opinions of the prompted populations, but can reflect harmful cultural stereotypes. When we translate GlobalOpinionQA questions to a target language, the model’s responses do not necessarily become the most similar to the opinions of speakers of those languages. We release our dataset for others to use and build on. Our data is at https://huggingface.co/datasets/Anthropic/llm_global_opinions. We also provide an interactive visualization at https://llmglobalvalues.anthropic.com.

  • Using the Veil of Ignorance to align AI systems with principles of justice

    Click to have a preview.

    The philosopher John Rawls proposed the Veil of Ignorance (VoI) as a thought experiment to identify fair principles for governing a society. Here, we apply the VoI to an important governance domain: artificial intelligence (AI). In five incentive-compatible studies (N = 2, 508), including two preregistered protocols, participants choose principles to govern an Artificial Intelligence (AI) assistant from behind the veil: that is, without knowledge of their own relative position in the group. Compared to participants who have this information, we find a consistent preference for a principle that instructs the AI assistant to prioritize the worst-off. Neither risk attitudes nor political preferences adequately explain these choices. Instead, they appear to be driven by elevated concerns about fairness: Without prompting, participants who reason behind the VoI more frequently explain their choice in terms of fairness, compared to those in the Control condition. Moreover, we find initial support for the ability of the VoI to elicit more robust preferences: In the studies presented here, the VoI increases the likelihood of participants continuing to endorse their initial choice in a subsequent round where they know how they will be affected by the AI intervention and have a self-interested motivation to change their mind. These results emerge in both a descriptive and an immersive game. Our findings suggest that the VoI may be a suitable mechanism for selecting distributive principles to govern AI.

  • What Would Jiminy Cricket Do? Towards Agents That Behave Morally

    Click to have a preview.

    When making everyday decisions, people are guided by their conscience, an internal sense of right and wrong. By contrast, artificial agents are currently not endowed with a moral sense. As a consequence, they may learn to behave immorally when trained on environments that ignore moral concerns, such as violent video games. With the advent of generally capable agents that pretrain on many environments, it will become necessary to mitigate inherited biases from environments that teach immoral behavior. To facilitate the development of agents that avoid causing wanton harm, we introduce Jiminy Cricket, an environment suite of 25 text-based adventure games with thousands of diverse, morally salient scenarios. By annotating every possible game state, the Jiminy Cricket environments robustly evaluate whether agents can act morally while maximizing reward. Using models with commonsense moral knowledge, we create an elementary artificial conscience that assesses and guides agents. In extensive experiments, we find that the artificial conscience approach can steer agents towards moral behavior without sacrificing performance.

Frontier AI Risks

Cyber security; Biological weapons; Deception; Manipulation and other concerns.

Recommended Papers List

  • AI and biological weapons

    Click to have a preview.

    There has been no incident of biological agents being used as a weapon of mass destruction in the recent past. Yet as the above examples show, there have been attempts to explore and create technologies that could be weaponised by both state and non-state actors. The threat was made apparent by James Clapper, US Director of National Intelligence, who added gene editing in their annual worldwide threat assessment report in 2016.5 Since then, there has been a wider recognition that the advances in technologies and improved access to science have lowered the barriers to creating designer bioweapons.

  • Discovering Language Model Behaviors with Model-Written Evaluations

    Click to have a preview.

    As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically generate evaluations with LMs. We explore approaches with varying amounts of human effort, from instructing LMs to write yes/no questions to making complex Winogender schemas with multiple stages of LM-based generation and filtering. Crowdworkers rate the examples as highly relevant and agree with 90-100% of labels, sometimes more so than corresponding human-written datasets. We generate 154 datasets and discover new cases of inverse scaling where LMs get worse with size. Larger LMs repeat back a dialog user’s preferred answer (“sycophancy”) and express greater desire to pursue concerning goals like resource acquisition and goal preservation. We also find some of the first examples of inverse scaling in RL from Human Feedback (RLHF), where more RLHF makes LMs worse. For example, RLHF makes LMs express stronger political views (on gun rights and immigration) and a greater desire to avoid shut down. Overall, LM-written evaluations are high-quality and let us quickly discover many novel LM behaviors.

  • GPT-4 Technical Report

    Click to have a preview.

    We report the development of GPT-4, a large-scale, multimodal model which can accept image and text inputs and produce text outputs. While less capable than humans in many real-world scenarios, GPT-4 exhibits human-level performance on various professional and academic benchmarks, including passing a simulated bar exam with a score around the top 10% of test takers. GPT-4 is a Transformer-based model pre-trained to predict the next token in a document. The post-training alignment process results in improved performance on measures of factuality and adherence to desired behavior. A core component of this project was developing infrastructure and optimization methods that behave predictably across a wide range of scales. This allowed us to accurately predict some aspects of GPT-4’s performance based on models trained with no more than 1/1,000th the compute of GPT-4.

  • GPT-4V(ision) System Card

    Click to have a preview.

    GPT-4 with vision (GPT-4V) enables users to instruct GPT-4 to analyze image inputs provided by the user, and is the latest capability we are making broadly available. Incorporating additional modalities (such as image inputs) into large language models (LLMs) is viewed by some as a key frontier in artificial intelligence research and development. Multimodal LLMs offer the possibility of expanding the impact of language-only systems with novel interfaces and capabilities, enabling them to solve new tasks and provide novel experiences for their users. In this system card, we analyze the safety properties of GPT-4V. Our work on safety for GPT-4V builds on the work done for GPT-4 and here we dive deeper into the evaluations, preparation, and mitigation work done specifically for image inputs.

  • Model evaluation for extreme risks

    Click to have a preview.

    Current approaches to building general-purpose AI systems tend to produce systems with both beneficial and harmful capabilities. Further progress in AI development could lead to capabilities that pose extreme risks, such as offensive cyber capabilities or strong manipulation skills. We explain why model evaluation is critical for addressing extreme risks. Developers must be able to identify dangerous capabilities (through “dangerous capability evaluations”) and the propensity of models to apply their capabilities for harm (through “alignment evaluations”). These evaluations will become critical for keeping policymakers and other stakeholders informed, and for making responsible decisions about model training, deployment, and security.

  • The superintelligent will: Motivation and instrumental rationality in advanced artificial agents

    Click to have a preview.

    This paper discusses the relation between intelligence and motivation in artificial agents, developing and briefly arguing for two theses. The first, the orthogonality thesis, holds (with some caveats) that intelligence and final goals (purposes) are orthogonal axes along which possible artificial intellects can freely vary—more or less any level of intelligence could be combined with more or less any final goal. The second, the instrumental convergence thesis, holds that as long as they possess a sufficient level of intelligence, agents having any of a wide range of final goals will pursue similar intermediary goals because they have instrumental reasons to do so. In combination, the two theses help us understand the possible range of behavior of superintelligent agents, and they point to some potential dangers in building such an agent.

Next