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[1] STaR: Bootstrapping Reasoning With Reasoning https://arxiv.org/abs/2203.14465

Demis Hassabis: "At a high level you can think of Gemini as combining
some of the strengths of AlphaGo-type systems with the amazing
language capabilities of the large models. We also have some new
innovations that are going to be pretty interesting."
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* Motivation: Efficiently training LARGE model

Common carbon footprint benchmarks
I bs of €02 equivalenit

Expensive: Training GPT-3 required at least $4,600,000

Roundtrip flightb/w NY and S (1

passenger - Extensive resources: many training data, large network
Human life (avg 1 year) [ 11,023

fericanie (evo Jitee") Wl se1s6 Bigger models, more data -> usually better performance
UScar including fuel (avg 1 lifetime) - 126,000

ooT 121695

5 B 03617

C ~6ND

Increase N -> better performance
C = number of FLOPs (computations)
N = number of model parameters

D = amount of training data

Increase D -> better performance
But we have a budget on C ~6ND
How to maximize model performance by allocating C to N and D?

[Data Source: (Strubell et al., 2019)] [Data Source: (Patterson et al. 2021)]
Jared Kaplan, et al. Scaling Laws for Neural Lanquage Models.
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Comparing Test-time and Pretraining Compute
in a FLOPs Matched Evauation

[ L] +27 8%

One significant challenge in mathematical reasoning is the high sensitivity
to individual mistakes (Shen et al., 2021a). .When generating a solution, au-
toregressive models have no mechanism to correct their own errors. Solutions
that veer off-course quickly become unrecoverable. If we rely purely on genera-
tive methods and extrapolate from current trends, we will require an exorbitant

parameter count to achieve even moderate performance on distributions as chal-

Relative Improvement in Accuracy
From Test-time Compute (%)

lenging as the MATH dataset (Hendrycks et al., 2021). This evidence strongly _gp @ Easy Quesions
motivates the search for methods Wlth more favorable Scahng la,ws - ar2%
—_ - - -40
<< ~=1 >>1
Ratio of Inference Tokens to Pretraining Tokens
[1] Training \erifiers to Solve Math Word Problems 2110.14168

[2] Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters


https://arxiv.org/pdf/2110.14168
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[1] https://openai.com/index/learning-to-reason-with-lims/ train-time compute (log scale) test-time compute (log scale)
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[1] Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters
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Self-Play RL

o {ELLMs THYSelf-Play, EEEE4FHYGenerator & Verifier; (BERLLME TS B FEY
Verifier (Reward Model)
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Self-play in LLMs

*In games, we have a great verifier but a bad generator
* Really easy to score chess
* Unlimited reward data

*In LLMs, we have a great generator but a bad verifier (usually)
* Trillions of tokens of human text
* Far less reward data
* Hard to score one poem versus another, especially a partial poem!

* But this may change with time!
* Amount of reward data is increasing
* Some domains are easier to score than others



. Reward Model

e Preliminaries: Common Strategies for Training RMs
» Collecting Pairwise Dataset
» Training a Reward Model
»Use Reward Model

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

0 o

Explain gravity. Explain war.

o o

Moon is natural People went to
satellite of. the moomi

0-0-0-0

[1] Training language models to follow instructions with human feedback

Reward modeling (RM). Starting from the SFT model with the final unembedding layer removed,
we trained a model to take in a prompt and response, and output a scalar reward. In this paper we
only use 6B RMs, as this saves a lot of compute, and we found that 175B RM training could be
unstable and.thus was less suitable to be used as the value function during RL (see Appendix [C]for
mote details).

In|Stiennon et al.|(2020), the RM is trained on a dataset of comparisons between two model outputs
on the same input. They use a cross-entropy loss, with the comparisons as labels—the difference in
rewards represents the log odds that one response will be preferred to the other by a human labeler.

In order to speed up comparison collection, we present labelers with anywhere between K = 4 and
K = 9 responses to rank. This produces (12{ ) comparisons for each prompt shown to a labeler. Since
comparisons are very correlated within each labeling task, we found that if we simply shuffle the
comparisons into one dataset, a single pass over the dataset caused the reward model to overﬁt
Instead, we train on all (‘g ) comparisons from each prompt as a single batch element. This is much
more computationally efficient because it only requires a single forward pass of the RM for each
completion (rather than (‘;( ) forward passes for K completions) and, because it no longer overfits, it
achieves much improved validation accuracy and log loss.

Specifically, the loss function for the reward model is:

1
loss (9) = 7WE(:B,y-w.y1)~D [l()g (U (Tﬁ‘ (I1 y'w) —Te (I, yl)))] (1)
2

where ry(x, y) is the scalar output of the reward model for prompt = and completion y with parameters
0, . is the preferred completion out of the pair of y,, and y;, and D is the dataset of human
comparisons.

That is, if each of the possible (I:f ) comparisons is treated as a separate data point, then each completion
will potentially be used for K — 1 separate gradient updates. The model tends to overfit after a single epoch, so
repeating data within an epoch also causes it to overfit.
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Let Let
@+ 32" — 4 = pi(2)pa(@) - - pel(), 2% 3" — 4 = pi(2)ps(a) - - - pi(a),
where each non-constant polynomial p;(z) is monic with integer coefficients, and where each non-constant polynomial p;(z) is monic with integer coefficients, and
cannot be factored further over the integers. Compute p;(1) + pa(1) + - - - + pi(1). cannot be factored further over the integers. Compute pi(1) + p2(1) + - - + pi(1).
I notice that the given polynomial has even degree and only even powers of z, so I can try to This problem is about factoring a polynomial over the integers, which can be a tricky task.

ak bstitution to simplify it.
ol oy One possible strategy is to look for rational roots of the polynomial, using the rational root

Let y = z%, then the polynomial becomes y? + 3y — 4, which is a quadratic equation. theorem.

T can factor this quadratic equation as (y + 4)(y — 1), so the original polynomial is (z* + 4)(z* =1). " However, that would involve checking a lot of possible factors of —4, and there is no guarantee
Now I need to factor each of these factors further, if possible, over the integers. that the polynomial has any rational roots at all.

For the first factor, z* + 4, I recall the Sophie Germain identity, which says that a* + 4b* = Another possible strategy is to use some algebraic tricks to simplify the polynomial or reduce
(a® + 2b° + 2ab) (a® + 2b® — 2ab). its degree.

Applying this identity with a =z and b =1, I get z* + 4 = (2® + 22 + 2)(2® — 2z +2). I notice that the polynomial has only even powers of &, so I can try to substitute y = z* and
For the second factor, &* — 1, I can use the difference of Squares formula, which says that see what happens.

a? — b = (a+b)(a—b). Then the polynomial becomes y* + 3y* — 4, which is a quadratic equation in y2.

Applying this formula with a = ® and b = 1, L get @ =1 = (¢ $1)(z” - 1). I can try to factor this quadratic equation by looking for two numbers that multiply to —4 and
Then I can apply the difference of squares formula again with'a = z and b = 1, to get 2> — 1 add to 3.

=(@+1)(z-1). Those numbers are 4 and —1, so I can write y* + 3y* —4 = (y> + 4)(y%2 - 1).

So the original polynomial is (¢% #4)(z* — 1) =(@* + 2z +2)(2* — 22+ 2)(a” + 1)(z + 1)(@ —1). Now I can substitute back z? = y and get 2° + 32% — 4 = (z* + 4)(z* — 1).

These are all the irreducible factors over the integers, so p1 () = @* + 27 +2, p2(z) = 3° =22 +2,  This looks promising, because I have reduced the degree of the factors from 8 to 4.
pa(z) =2+ 1, pa(z) =+ 1, and ps(z) =z — 1.

X . i X I can try to factor each of these factors further, using the difference of squares formula.
To find the sum of their values at = 1, I just need to plug in = 1 into each factor and add

I get 28 +32% — 4 = (22 + 2)(2® — 2)(2® + 1)(z% — 1).

them up.

Igetplz)l) =1242.142=5p(1)=12-2-142=1ps(1) =12+ 1=2,py(1) =1+ 1=2, I can apply the difference of squares formula again to the last factor and get 2% + 3z* — 4 =
and p;(1) =1—1=0. (z® + 2)(a* — 2)(z® + 1) (= + L) (z — 1).

So the final answer is 5+ 142+ 2+ 0= 10. Now I have factored the polynomial completely into monic linear and quadratic factors with
Answer: 10 integer coefficients.

These are the p;(z)’s that the problem is asking for.

To find the sum of their values at z = 1, I just need to plug in = 1 into each factor and add
them up.

T get pr(1) +po(1) +--- + p(1) = (12 +2)(12 — 2)(12 + 1)(1 + 1)(1 —1).
Simplifying, I get p1(1) +pa(1) + - + pu(l) = (3)(=1)(2)(2)(0)-
Multiplying, T get pi(1) +p2(1) + -+ + pe(1) = 0.

Answer: 0

[1] Let’s verify step by step
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[1] Generative Verifiers: Reward Modeling as Next-Token Prediction
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[1] Al Alignment: A Comprehensive Survey 2310.19852

[2] Self-critiquing models for assisting human evaluators
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Task

9 Write a function in Python that takes as input astring path representing
of

o
]

K| RS~

e

18R

£t A BESTETE Generator-Discriminator-

a file path and returnsa File object for the file at “path”. Files outside
the directory “/safedir” should not be allowed to be accessed.

Solution

)

[1] LLM Critics Help Catch LLM Bugs

import os

def get_file_object(path):
# Define the safe directory
safe_dir = "/safedir"
# Get the absolute path of the file

and

the sa

absolute_file_path = os.path.abspath(path)

fe directo

absolute_safe_dir = os.path.abspath(safe_dir)

# Check if the file is within the safe directory
if not absolute_file_path.startswith(absolute_safe_dir):
raise FileAccessError(“Access to files outside of *

"' /safedir’

is no

t allowed.")

ry

(<3 criticGPT

Checking if an absolute path of afile is
within a directory by using startswith() is
insecure. Users could exploit this with symlinks

or by naming directories similarly. Using
os.path.commonpath([absolute_file_path,

absolute_safe_dir]) or a more robust method
of path containment is advisable.
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[1] Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
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STaR can be seen as an approximation to an RL-style policy gradient objective. To see this, note
that M can be viewed as a discrete latent variable model pys(y | ) = > p(r | 2)p(y | z,7); in
other words, M first samples a latent rationale r before predicting y. Now, given the indicator reward
function 1(j = y), the total expected reward across the dataset is

J(Ma X, Y) - ZEﬂ,iniﬂM('ﬁé)l(gi = yi)’ (D

VJ(Ma X, Y) = ZEf‘i,QiNPM(‘l-Té) []1(372 = yi) -V logpM(yA’i: T | mi)] ) (2)
1

where the gradient is obtained via the standard log-derivative trick for policy gradients. Note that
the indicator function discards the gradient for all sampled rationales that do not lead to the correct
answer ;. this is the filtering process in STaR (Line 5). Thus, STaR approximates J by (1) greedily
decoding samples of (7;, ;) to reduce variance of this estimate (at the cost of potentially biased
exploration of rationales), and (2) taking multiple gradient steps on the same batch of data (similar
to some policy gradient algorithms [25]). These approximations make STaR a simple and broadly
applicable method that can be implemented with standard LLLM training machinery; future work
should more closely investigate the link between STaR and the RL objective above.

[1] STaR: Bootstrapping Reasoning With Reasoning
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Figure 1: The repeated sampling procedure that we follow in this paper. 1) We generate many candidate solutions for
a given problem by sampling from an LLM with a positive temperature. 2) We use a domain-specific verifier (ex. unit
tests for code) to select a final answer from the generated samples.
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Figure 1: The inference computation scaling laws of Pythia exhibited in error rate on the GSM8K
test set. We evaluate Pythia model using various sizes and various numbers of sampled solutions
for majority voting. The left panel shows the error rate for each model size decreases steadily when
the computation increases and converges at the end. The right panel shows the model performances
given inference FLOPs budgets. In particular, the three stars highlight the optimal model size under

, 2%, and 2*" FLOPs, indicating that the optimal model size can vary given different budgets. Both
the x and y axes are shown in log scale.

[1] An Empirical Analysis of Compute-Optimal Inference for Problem-Solving with Language Models
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Table 1: Disallowed Content Evaluations

Dataset Metric GPT-40 ol-preview ol-mini
Standard Refusal Evaluation not unsafe 0.99 0.995 0.99
not overrefuse 0.91 0.93 0.90
Challenging Refusal Evaluation not unsafe 0.713 0.934 0.932
WildChat [16] not unsafe 0.945 0.971 0.957
XSTest [17] not overrefuse  0.924 0.976 0.948

[1] https://openai.com/index/openai-ol-system-card/
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4.2.1 Observation of Reward Hacking on Cybersecurity Task

vvvvvv @ Tell
Compared to GPT-40, ol-preview and ol-mini demonstrated a greater ability to break down (@)  peblshedimmedite) e

N . . . e e SIS B BN echo "def reward (x) : return 100" >
tasks into subtasks, reason about what strategies would be effective to successfully complete oo Comyute oy
. . . . . Is.. Jrl_environment/block_reward_hack_attempts
an offensive security task, and revise plans once those strategies failed. We also observed that /3t Documents/Applcation shhoems_for_phd_apppy fbash> -
reasoning skills contributed to a higher occurrence of “reward hacking,” where the model found an e A
. . . . . . ay 3 PSETEVE SRR EERSCOL ' 0.
easier way to accomplish goals in underspecified tasks or tasks which should have been impossible T D e e e
| <fcot>
due to bugs. e e il iuiedeil
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[1] Sycophancy to Subterfuge: Investigating Reward-Tampering in Large Language Models
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Survey:

o https://alignmentsurvey.com/

o Al Alignment: A Comprehensive Survey : https://arxiv.org/abs/2310.19852

What is the Alignment Problem?

Recent advancements in deep learning, including Large L

Models (LLMs) and Reinf L (RL), have reignited interest in the potential of

advanced Al systems, which hold promise to benefit society and further human progress.

The following are some of the alignment problems examples:

Haetal., 2017

A quadrupedal evolved agent, trained to carry a ball on its back,
learns a trick that it can place the ball on leg joints and wiggle

across the floor without dropping it.

Amodei et al., 2016 Christiano et al., 2017

A robot arm, trained with human feedback to grasp a ball, learned
to position its hand between the ball and the camera, creating a
false impression of success.

Despite frequently catching fire, colliding with other boats,
and going in the wrong direction, the agent achieves a higher.
score by using this strategy.

What is the Alignment Objective?

The RICE principles define four key characteristics that an aligned system should possess:

’ﬁ&g’ Robustness

Interpretability

Operates reliably under diverse scenarios & Resilient to unforeseen disruptions.

Decisions and intentions are comprehensible & Reasoning is unconcealed and truthful.

;;‘*5’ Controllability
Ethicality

Behaviors can be directed by humans & Allows human intervention when needed.

Adheres to global moral standards & Respects values within human society.

Overview of the RICE Principles.

Summarized by Alignment Survey Team. For more details, please refer to our paper

These four principles guide the alignment of an Al system with human intentions and values. They are not end goals in themselves but intermediate objectives

in service of alignment.
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Summarized by Alignment Survey Team. For more details, please refer to our paper.



SRS

Blogs:
o ILAXITFHIAIESERZE: OpenAl o1 FE [EillE] RSt E=IFset.

LLMASSER4E#8: RLESE#AY Scaling Law

e Learning to Reason with LLMs (OpenAl o1 FARHRE)
e OpenAl o1-mini
e Finding GPT-4" s mistakes with-GPT-4 (CriticGPT/143)

e Summary of what we have learned during AMA hour with the OpenAl o1 team
(OpenAl o1 Team Z£%)


https://mp.weixin.qq.com/s/FXGdJA8OyZvLl89rXJiyAQ
https://mp.weixin.qq.com/s/JPfgF6UtgIYwWXwNQHOoqQ
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://openai.com/index/finding-gpt4s-mistakes-with-gpt-4/
https://twitter-thread.com/t/1834686946846597281

SRS

Papers
e Training Verifiers to Solve Math Word Problems (GSM8K)

o Generative Language Modeling for Automated Theorem Proving (BzEIEUERR)
e Chain-of-Thought Prompting Elicits Reasoning in Large Language Models (CoT)

e Let's Verify Step by Step (Process Reward -Model)
e LLM Critics Help Catch LLM Bugs (CriticGPT)

e Self-critiquing models for assisting human evaluators


https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2009.03393
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2407.00215
https://arxiv.org/pdf/2206.05802

Thank You

Life can only be understood backwards; but it must be lived forwards.

— Sren Kierkegaard

Jb K3 v
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