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y do we need other methods to align

In standard RLHF, PPO is used for training LLMs. However, PPO is sensitive to

hyperparameters, which makes it hard to train.
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Fig. 1. The models required and process for PPO training stage in RLHF.
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Motivation
The challenges of applying PPO in language models

Despite the acclaimed effectiveness of PPO [SWD"17], recent research has identified
the following three issues in language models that require additional study:
® Mode collapse PPO can reduce the output randomness of language models,
misleading the model into producing deterministic responses.
® Instability PPO uses multi-step approximation, these steps sometimes trigger
instability in training, leading to an abrupt drop in model performance.
® Poor sample efficiency The family of policy gradient algorithms suffers from
slow convergence and can yield poor ultimate policies [OWJ*22]. PPO is
susceptible to the same problems.
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Motivation
The Advantages of APA

To address such issues, [ZSF'23] introduces Advantage-Induced Policy Alignment
(APA), which directly aligns the output policy of the language model with a target
policy in each training epoch. Three major advantages of APA over PPO:

e APA is more sample-efficient. APA performs better than PPO in fine-tuning on
the same number of samples.

® APA training is more stable APA is much less prone to sudden performance
degradation during training. The control over such policies deviations is critical in
preventing over-optimization on reward models

® APA has fewer hyperparameters. The loss function in APA involves only one
major tunable parameter for KL control, while in PPO, there are more
hyperparameters.
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Reinforcement Learning

RL captures the interaction between an agent and an environment via the formalism of
a MDP. We consider a finite-horizon MDP represented by a tuple:

M:(S7A7H7P7r7p)

where S is a finite state space, A is a finite action space, H is the horizon.
P:Sx A~ A(S)

is a probability transition matrix,
r:SxAw—10,1]

is a reward function, and
p:S— A(S)

is the initial state distribution.
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Reinforcement Learning

A policy 7 : S — A(A) is a function that maps a state to a distribution over actions.
The value function V™ : § — R of policy 7 is defined as the expected sum of
discounted rewards when the agent starts from initial state s and follows policy ™
throughout the episode. Let v € [0, 1] be the discount factor. For any s € S, we have:

—]E[Z’Y r(s-,a-)|so=s,ar ~7(: |57')757'+1NP('|57'737‘)}

Given a policy 7, the state-action value function, also known as the Q-function, can
be defined analogously. For state s € S and a € A, we have:

T=0

H
Qﬂ<57 a) =E [ZVTr(STaaT) | S,a,ar ~ 7T'(' | ST)7ST+1 ~ ’D( | ST)aT)]
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Reinforcement Learning

We also define the important notion of an advantage function. For a policy 7, state s
and action a, the advantage, defined as

Adv™(s,a) = Q"(s,a) — V" (s)

We also define the occupancy measures dZ.;. : S — [0,1] and
dr :Sx A—[0,1] as

action

H
. 1
dstate (5) = EZP(Sh =S | 7'(')
and
1M
rction (S5 @) 1= EZP(Sh =s,ap=al|m)
h=1

where P(- | ) signifies that all actions are drawn from 7.
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Preliminaries

A language model as a reinforcement learning agent

A language model can be viewed as an agent that operates in an environment with
state space S = U/Ij:o X* and action space A = X, where H is the maximum number
of tokens. The transitions are always deterministic, with the next state equal to the
concatenation of all the previous tokens and the current token:

P(shy1 = (X1, xk) | sh= (X1, ,Xk—1) ,an = xx) = 1
Specifically, a language model receives as input a sequence of tokens
(X5 vy Xn)

and generates a distribution over the next token x,41. The entire sequence is scored by
a reward model, which produces a scalar reward r.
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Preliminaries
A language model as a reinforcement learning agent

In this context, fine-tuning is equivalent to improving the agent policy 7.

We note that most transformer-based language models map a state (context) s and an
action (next token) a to a logit gs(s, a), and the next token is sampled according to
the distribution induced by the logits {qgs(s,a)},c 4. This gives rise to the following
natural parameterization of a language model policy:

exp (go(s, a))
> aca P (ga(s, a))

mo(a|s) =

The next token prediction problem can be solved using RL.
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Fine-Tuning Based on Reinforcement Learning

Proximal policy optimization

For each fixed state s, we consider the following KL-regularized optimization problem
as a target of policy improvement:

maxiemize}'(e; §,7) = Eauryls) [AdVT(s,a)] = A - KL (g (- | 8)||7inie (- | 5))

minit refers to the initial policy of the language model before the RLHF stage, 7 is an
arbitrary policy that we hope to improve.

° K. .. (s [Adv" (s, a)] is an expected advantage, and to maximize the expected
armg(:|s)
advantage, the agent is encouraged to move toward the optimal action in state s.

® \-KL (mg(- | s)||7init (- | 5)) is a KL regularizer, controls the deviation of 7y from
Tinit -
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Fine-Tuning Based on Reinforcement Learning

Proximal policy optimization

PPO leverages importance sampling to circumvent sampling from , arriving at

mg(a|s)

Eanrg( 1) [AAV™ (s, @)] = Earyy (1) [m

Adv™H (s, a)}

where the expectation on the right-hand side can be estimated in an unbiased manner

from finite samples.
Instead of penalizing the expected advantage with the estimated KL-divergence as in:

maxémize}'(@;s,ﬂ') = Eanmg(-ls) [Adv™ (s, a)] — A - KL (mg(- | 8)||minit (- | 5))

PPO directly subtracts the KL penalty term from the reward received by the agent,
and adaptively adjusts the penalty weight A\ based on the deviation of 7y from 7, .
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Fine-Tuning Based on Reinforcement Learning

Proximal policy optimization

The KL-penalized reward is then used to estimate a new advantage function Adv . To
avoid ill-conditioned gradients caused by large values or importance ratio estimates,
PPO applies clipping to the objective function. The final loss function £FFO(9; D) =

_ L Z min{ o A/d\V(S,a),Clip< o ,1—6,1+€> @(573)}

|D| (5,2)€D Told Told

Note that the loss function relies on extra tunable hyperparameters. The clipping also
makes the estimator biased. Hyperparameters and approximation lead to

instability.

Institute for Al, Peking University

Lecture 8: Alignment methods in Language Models Il 19 / 52



Advantage-Induced Policy Alignment
0000000

Fine-Tuning Based on Reinforcement Learning

Advantage weighted regression (AWR) [AMAS20]

If the parameterized policy space {my} contained all possible policies, the maximizer of
F (0;s,mo1d ) (2) would induce a policy 7* that satisfies

1 n
7 (als) = mm"“ (a|s)-exp(Adv™ (s,a)/))
where Z(s) = > c 4 minit (&' | 5) - exp (Adv” (s,a") /A) is a normalizing factor. In the
case that {mp} does not contain all policies, a natural way to maximize F (6;s, moiq ) is
to project m* to {my} with respect to KL-divergence, which gives rise to the AWR
algorithm. From the above equation, KL (7*(a | s)||ms(a | s)) =

Tinit (2] S) Adv™ (s, a)
 Z(s) 2 ( A

where C(s) is a constant that does not depend on 6.

> log (mg(a|s)) + C(s)
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Fine-Tuning Based on Reinforcement Learning

Advantage weighted regression

To minimize the KL (7*(a | s)||mg(a | s)), authors make three changes to the objective
that help to set the stage for the new method:

® We replace minjt with 7g1q , which can be approximated with finite samples.

e The KL (n*(a| s)||mg(a | s)) only accounts for one state s. To incorporate other
states, we minimize a weighted sum of KL-divergences, with states sampled from
the state-action occupancy measure d™l

® We use the approximation Z(s) ~ 1.
With these changes, we arrive at the following population loss for AWR:

LR () = —E(s,a)mdmas [exp (AdV™ (s, a)/A) log (mg(a] s))]
AWR can be unstable in the online case.
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Fine-Tuning Based on Reinforcement Learning
Advantage-Induced Policy Alignment
To project the optimal policy 7* in:
1
m™(als) = %ﬂ-init (a|s)-exp(Adv™ (s,a)/N)
onto the parameterized policy space, we may also consider another distance instead of
KL-divergence. In APA, we employ the squared error between log probabilities in place
of the KL-divergence:

(logm*(a | s) —logms(a | s))*
Similar to our implementation of AWR, we also apply Z(s) = 1, and consider a
weighted sum of squared errors with states sampled from d™ | giving rise to the
following population loss:

LAPA) = ) _guon [(log mo(a | s) — Adv™ (s, a) /A — log min (3 | s))2]

Authors establish theoretically that the empirical loss is a reasonable surrogate for the

population loss.
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Online Policy Optimization with 18 model
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Online Policy Optimization with 68 model
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Fig. 2. Comparison of the performance of three methods on the HH dataset. The x-axis represents the total steps, which are proportional to the
amount of data used in the training procedure. The y-axis is the reward evaluated by the same reward model.

We see that with the same amount of data, APA is able to achieve the highest reward
in all three cases. We also observe that PPO becomes more stable with large models,

potentially due to smaller batch size, or the ability of getting higher reward with a
smaller deviation in KL divergence.
Dr. Yaodong g

Institute for Al, Peking Uni

gnment methods in Language Models |l



Advantage-Induced Policy Alignment
0000

Results and Conclusions

HH dataset

KL divergence between the trained and the initial policy for 18 model ~ KL divergence between the trained and the initial policy for 68 model
0
— vr0
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Fig. 3. Comparison of the performance of three methods on the HH dataset. The x-axis represents the total steps. The y-axis is the KL divergence
between the trained model and the initial model.

We show how the KL divergence between the current policy and the initial policy
changes as a function of the training process for the three seeds. We can see that for all
three models, APA provides similar or better KL control than PPO and AWR, although
we note that for the 6 B model the KL control for PPO is slightly better than APA.
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Results and Conclusions

Conclusions

The key takeaways from the comparisons of the three RLHF algorithms that we have
studied can be summarized as follows:

Mode collapse RL algorithms may encourage the language model to produce less
diverse output, such that the policy that maximizes total reward is deterministic. To
rein in such behavior, it is crucial to impose control on the divergence between new
policies and the initial policy after SFT. However, the clipping of the objective function
and the adaptive KL controller make the behavior of PPO unpredictable. APA is able
to provide better and easy-to-adjust KL control by explicitly tuning the hyperparameter
A, which helps mitigate mode collapse.
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Conclusions

Stability PPO suffers from significant performance degradation whenever the model
policy diverges too much from the initial policy mnit , an effect which is more
pronounced for smaller models. We attribute this to the KL controller in PPO.

Sample efficiency With the same level of control over KL-divergence, APA shows
higher sample efficiency than PPO and AWR. One possible explanation is that in both
PPO and AWR, policy improvement critically depends on using finite samples to
reconstruct the sampling policy 7o1q , Wwhereas in APA, minimizing the population loss
hinges less on the reconstruction of mgq -
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Motivation

Disadvantages of existing alignment met

Some commonly used alignment methods:

PPO to optimize for a trained alignment score module: PPO is sensitive to
hyperparameters, and requires additional training in the reward model and value
network.

Imitation learning to a final-answer or reward-model filtered dataset [UKK™22].
IL is less data-effective as it only makes use of the success instruction-output pairs,
completely abandoning the ones that do not align.

[ZLW 23] propose Hindsight Instruction Relabeling (HIR) that utilizes not only
successful instruction-output pairs but also bootstrap from failed ones.
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Background
Goal-Conditioned Reinforcement Learning

Standard MDP A tuple (S, A,P,R). R(s,a) is the reward function. The policy 7 is
a map-ping from S to A. The goal is to find an optimal policy 7#* that maximizes:

= [ZWR st,atl

where a; ~ 7 (a | s¢).

Goal-conditioned MDP A tuple (G, S, A, P,R,), where G represents the goal space.
Meanwhile, both the reward function R(s, a, g) and policy 7(a | s,g) need to be
goal-dependent. Thus, the objective is to find an optimal pol-icy 7* that maximizes

[Z'Y (St;ar, 8t ]

where a; ~ 7 (a | st, gt)-
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Hindsight Instruction Relabeling

Instruction Following as Goal-conditioned RL

A language model M can take instructional prompt p and initial query token sequence
q={qo,...,q;} as input, and autoregressively predict next token e;;1 =

M (p,q,{eo,...,e}). We can view standard prompt-conditioned language tasks (e.g.
multi-step reasoning) as a goal-reaching problem, by formulating the MDP as follows:

® Goal space G : space of instructional prompt p

e State space S : space of input token sequence q U {e;}
® Action space A : space of output token ey

® Transition probability P : M (ej+1 | p,q, {eo,...,€i})

® Reward R : alignment score of {ey,...,e;11} with instruction p and query q, can
from human feedback or scripted feedback, which is not used in HIR.
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Hindsight Instruction Relabeling

Instruction Following as Goal-conditioned RL

Here all G, S and A are space of token embeddings, but G corresponds to instructional
prompts, while S and A corresponds to model inputs and outputs. In this way, we can
also view the language model as a goal-conditioned policy:

m:= M(eit1|p;q,{eo, ., e})
Meanwhile, since the transition dynamics
P=M (ei+1 ’ P, q, {e07 ERE 7ei})

are also computed from the model outputs, we can also view this language model as a
"world model" to interact with.
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Hindsight Instruction Relabeling

ion Following as Goal

... apple, banana, peach ... ... today is Sunday, so ... tomorrow is ...
LLM as Policy s LLM as World Model
... sort these words: ... ... today is Sunday, so ...

Fig. 4. lllustration of Large Language Model (LLM). HIR views LLM as both a policy and a world model. Thus, HIR can collect data through
interactions with LLM in the online sampling phase, and further improve the policy in the offline learning phase.
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Algorithm Overview

Hindsight Instruction Relabeling (HIR), a novel approach for instruction alignment.
HIR also consists of two phases: online sampling and offline relabeling.

)
Il
Instruction 0 1
Online Instruction N Collect rollout 0, = {eo, €1, €z,...,€L}n in LLM ’
1

Sampling

HIR Model Training

: n| a A Next Token / Seq2Seq Prediction J {éi,6i41,...,60}
" (coven, veei] A
Offline ‘ D m (¢
Training 4
Getalignmentscore | s LLM Policy
—ied 538 B E— —y
\ I 7 |l 2 | [feoenen el
P e T s N

Fig. 5. Hindsight Instruction Relabeling HIR consists of two phases: online exploration phase and offline training phase. The algorithm alternates
between the two phases until convergence.
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Hindsight Instruction Relabeling

Online Sampling

Online Sampling We treat the model as both the environment and goal-conditioned
policy. We want to mimic the exploration phase in the standard RL paradigm, where
we often inject different noises into actions. Specifically, given instruction p and query
q, we use T = 1 to get the output sequence o = {eg,e1,..., e}, which gives us the
online replay dataset Dgnjine -

N
Donline = U {pia q,'70i}
i=1
Here each query q; is sampled from the training dataset. Instruction prompt p; is

initialized to be a pre-defined sen-tence and will be corrected to align with the output
o; in the later stage.
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Hindsight Instruction Relabeling

Offline Relabeling

Offline Relabeling The key component of our algo-rithm is the offline relabeling part.
In this part, for every instruction-output pair (p, q,0) that are not necessarily aligned,
we relabel this pair with a new instruction that can align with the outcome of the
model (p*,q,0). The new instruction p* is generated based on the feedback function
R(p,q,0) and the instruction generation function ¢(p, q,0,r), which can either be
learned or scripted.

Example In RLHF, if the learned reward model R(p, q,0) generates a score that ranks
about 75% as in the training data, we can give additional scripted instructions to the
model such as "give me an answer that ranks about 75% in training data". However,
as most human-feedback data is hard to collect, we adopt a scripted feedback function.
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Hindsight Instruction Relabeling

seudo code of HIR

The HIR algorithm alternates between the online sampling phase to generate a dataset
and the offline instruction relabeling phase for model improvement.

Algorithm 1 Two-Stage Hindsight Instruction Relabeling (HIR)
1: Input: Language Model M, Initial Prompt p, Training Set Dy, iy, Evaluation set Dey,, Iteration N, Sampling Rounds
T, Training Epochs K, Sampling Temperature 7, Empty RL dataset Dopiine

2: for episoden =1,---, N do

3: for sampling rounds ¢ = 1,--- , T do

4: Random sample batch of input queries Q ~ Dirain . .
5: Sample corresponding outputs 0; = M(Q, p,T) Online Sampling
6: Appending the trajectory to RL Dataset Dopiine < Dontine U (Q, P, 0;)

7:  end for

8: or training rounds t = 1,--- , K do

9: Random sample batch of query-output pairs (Q, O) ~ Dopline

10: Sample from Dyiine and apply relabeling as described in Sec. 4.3

11: Train model M using loss in Eq. (6)

12:  end for Offline Relabeling

13: end for

14: Evaluate policy my on evaluation dataset Deyal
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Hindsight Instruction Relabeling

Instruction Relabeling

Sub-output Relabeling It is important to sample partial outputs and relabel the
instruction. In this way, we could give more dense feedback through instruction
relabeling.

Consider we relabel the i-th time step. The input to the model is qU {eo,...,€e;_1}.
We can edit the instruction as a future goal based on the future alignment score:

p* :d)(pvq’{eia"'7eL}aR(p7q’{eia"'7eL}))

where ¢ and R are the instruction generation function and feedback function. The
model takes new inputs M (p*,q,{eo,...,ej_1}) and is trained to match the
prediction target {e;,...,e;}, and get the seq2seq loss Leypervise [RSRT20].

We sample trajectories from the data collected during online interaction in Dyyjine and
then uniformly sample different timestep i using the relabeling process as above.
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Hindsight Instruction Relabeling

Instruction Relabeling

Contrastive Instruction Following We also introduce the contrastive instruction
labeling along with the standard fine-tuning loss in our offline instruction relabeling
phase. Suppose 0o; = M (q;,p;). Given the log probability of o; conditioned on qx, px
as:

Pix = log Prq (0; | a: Pr)

We define the following contrastive loss:
exp (Pi)
Ccon astive — 1 ~n /1 \
o Z ® s oxp (P

This helps to avoid the model learning the behavior that maps the same output for
different instructions, and also benefits the online phase as the loss pushes down the
specific output for other instructions.
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Instruction Relabeling

Entropy Regularization As a common practice in RL, we apply entropy regularization
to the output given a particular instruction. This negative entropy term ensures the
sampling phase won’t converge too early for better exploration.

n
£entropy = Z Py log Py

i=1
In practice, we add two coefficients «, 3 for the contrastive loss and entropy loss. So
the final loss becomes:

Efinal e Esupervise + accontastive + /Bﬁentropy
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Hindsight Instruction Relabeling
Comparing to Previous Algorithms

® HIR also tries to learn from feedback to solve the instruction alignment problem.
However, RLHF requires additional RL training.

® Compared to the Final-Answer RL (FARL), HIR enables the algorithm to learn
also from failure cases.

No Additional | Utilize Failure | Supervised No Additional
Parameter Cases Learning KL Penalty*

PPO ®
FARL @
= [ © @1 ©

Fig. 6. Conceptual Comparison between HIR and baseline methods. HIR is a simple supervised learning algorithm, does not require any additional
parameter or KL penalty as an additional reward, and utilizes failure data.

O
®©
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Results and Conclusions

mparing to Baselines

HIR is more data-effective and doesn’ t require any additional RL training
pipeline.

o0 Average Performance on BigBench

---- Finetuning
704 67.3

=2}
o

Accuracy (%)
o
o

No Training PPO FARL HIR (Ours)

Fig. 7. Average Performance on BigBench. HIR demonstrates a significant average performance gain over 12 tasks on BigBench compared to all
baselines using FLAN-T5-Large.
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Summary

In this lecture, we covered the recent advances of alignment:
® Advantage-Induced Policy Alignment
® Hindsight Instruction Relabeling
In the past lectures, we introduced:
® Fundamentals of Reinforcement learning
® Fundamentals of Human Feedback
® Reinforcement Learning from Human Feedback
® Alignment Methods in LLMs
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