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y do we need human feedback?

¢ Align to human preferences Large Language models(LLMs) trained on vast
data can be biased. Human feedback identifies and corrects biases for accurate

and unbiased output.
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Fig. 1. Human evaluations of various models on the AP prompt distribution, evaluated by how often outputs from each model were preferred to those
from the 175B SFT model. Our InstructGPT models (PPO-ptx) as well as its variant trained without pretraining mix (PPO) significantly outperform

the GPT-3 baselines (GPT, GPT prompted); outputs from our 1.3B PPO-ptx model are preferred to those from the 175B GPT-3 [OWJ+22].
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do we need human feedback?

® Improve quality and safety LLMs may produce low-quality and harmful output.
Human feedback helps improve the model's overall quality and safety.

[ ‘What should T do if T want to rob a bank? } Human

) You need to attack the bank
" LEM X

egal and you

Learning from
should obtain money through ™ Luman feedback J

legal mean: as work.

Fig. 2. Comparison of responses on whether to use human feedback in LLMs

e Optimize user experience Incorporating human feedback enhances performance,
making models more useful for real-world applications.
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Motivation

Why do we need human feedback?

® Improve accuracy Feedback from humans can improve Al model predictions.

* Enhance contextual understanding Language is nuanced. Human feedback
helps models interpret context for more appropriate responses.

® Expand coverage Feedback from humans can help to improve the range and
diversity of language covered by the Al model.

¢ Continual improvement Human feedback can facilitate the ongoing refinement
and development of the Al model.

* Enable personalization Feedback from humans allows for the personalization of
responses to specific users or groups.
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Preliminaries

Foundations of LLMs

Consider a § parameterized language model M by conditional probability distribution
Po(y | x):

M: X =Y

Given an input of some type x € X, outputs text y € V. While x can be of any format
and y is in the space of natural language (i.e., Y C X* for some alphabet ¥).
® Training By optimizating the parameters 6* that maximize the likelihood of the
training data D = {(x,-,y,v)}fvzl.
¢ Inference Through the most-likely sequence of tokens:

M(x) ~ argmax Py« (y | x)
y

or through random sampling:
M(x) ~ Po«(y | x)
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Foundations of LLMs

Consider a language model M:
M:xX =Y
This model is often trained autoregressively and the general formulation encompasses a
wide range of tasks:
¢ Dialog Generation X is the space of possible dialog histories, and ) is the space
of possible responses.
® Machine Translation X and ) are the spaces of sentences in the source and
target languages, respectively.
® Image Captioning X is the space of images, and ) is the space of possible
captions.
® Summarization X is the space of documents, and ) the space of possible
summaries.
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Preliminaries
Basic formulation of human feedback

Formally, we consider human feedback to be a family of functions H to return some
feedback f € F. Each feedback function h € H:

h: X xY1 X xYy—F
—_———

n

where x € X' is the input and yi,--- ,y, € V are one or more outputs. A simple
example of a human feedback function h is asking humans to judge a particular output
is good or bad when given an input.

h: X xY—{0,1}
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Numerical Format

Formulati f numerical human feedbac

Numerical feedback, which returns a single score:

XxY—>NCR

Context

SR Profile S8 Profile
eard of org__[¥es | ieard of org [ ves
SYS: Would you like to donate? N lave _kids Init | Have kids Init
T Profile Builder } I
nate before | nit | Donate before [ init
USR: I don’t want to donate. .m = AL d0nole —
onation amount [0 | Donation amount [ ini

Refine with DialGAIL

Response Candidates Response Detector | Response Filter

ot |

ot 8 —\/‘ || | o |
o — —
donae, %!M s X~ V.V

[Everydolarcouns._ ] Repetiion | %
[ Ffuman Response .

Numerical ~—
(Creward ) human feedback x

Fig. 3. During training, pg generates n response candidates; Response Detector annotates them with corresponding status such as "Repetition"; and
the response candidates along with the golden human response send feedback to refine pg through the rewards. During testing, the refined pyx
generates n candidates again; Response Filter removes the detected repetitive and inconsistent candidates; and Response Imitator imitates human
demonstrations to select the most persuasive candidate as the final output. The dialogue history consists of the dialogue context and the Profiles
[SLSY20].

‘Human: Even five cents help.
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Different forms of numerical human feedbac

The direct assessments in machine translation typically ask humans to rate translations
on a continuous scale [Gral3]. [SLSY20] used even simpler feedback, by asking
humans to choose if a given response is good or not (N = {0, 1}).

User Rating  Expert Rating _[Expert Judgment
(v (v

Source Title Ttk Transiation majority)

Universal 4inl Dual USB Car Charger 45625 43 Correct
Adapter Voltage DC 5V 3.1A Tester For iPhone.

BEAN BUSH THREE COLOURS: YELLOW Bean
BERGGOLD, PURPLE KING AND GREEN TOP CROP | y vere

jor De Voltaje
3l

10 4.66 Incorrect

Continuous scale

Fig. 4. Examples for averaged five-star user ratings, five-star expert ratings and expert judgments on the user ratings [KKMR18].
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Fig. 5. Provide numerical human feedback on the output of the language model[Gral3].
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Application scenarios and characteristics of numerical format

Applicable scenarios: Translation, Legal, etc. Advantages:
¢ Precision and high standardization Can be designed to follow strict standards
and rules, ensuring output consistency, comparability and accuracy.
e Storage efficiency Usually takes up less storage space than other formats.
e Easy to leverage Easy to do supervised fine-tuning.
Unsuitable scenarios: Psychotherapy, etc. Disadvantages:
® Bias Leading to a costly collection process and problems of subjectivity and
variance.
¢ Difficult to evaluate It is difficult for humans to evaluate scenarios without
specific standards.
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Ranking-based Format

Formulation of ranking-based format

Humans need to rank multiple possible alternative outputs:
h: X XYV x--xY,—= S,

where S, represents the set of all rankings of n elements.

Step1 stp2 step3
Collect demonstration data, Collect comparison data, Optimize a policy against
and train a supervised policy. and train a reward model. the reward model using
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Formulation of ranking-based format

We assume that there is a human overseer who can express preferences between
sentence segments. A sentence segment is a sequence of words:

y:(W07W17"'7Wk—1)€y

Where w; is the i-th word in output sentence y. Write y' = y? to indicate that the
human preferred sentence segment y! to sentence segment y2. We say that
preferences > are generated by a reward function r : X x J — R if:

yl = (W&, wll, ..l W,}_l) - y? = (Wg, w12, AR Wf_l)
whenever
r((w&, W11, .., W,}_l)) > r((Wg, W12, s WE_l))
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Application scenarios and characteristics of ranking-based format

Applicable scenarios: Daily chatbot, etc. Advantages:

o Efficient collection Because it requires users to provide less detailed information
while still providing valuable insights on model performance.

® Reliability More reliable than single-point feedback, as it takes into account
multiple outputs and can reflect the overall performance of the model.

Unsuitable scenarios: Regional culture, etc. Disadvantages:

® Subjectivity Involves a degree of subjectivity, which may vary among different
individuals and contexts.

® Lack of granularity May not capture nuances in the quality of model outputs
that cannot be easily distinguished by a simple ranking system.

e Storage inefficiency Usually takes up more storage space than numerical format.
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Natural Language Format

The main approaches to using natural language feedback

® Providing training examples Users can correct bad model behavior by selecting
new training examples for the system [KTSC21].

® Marking the answers Users can provides feedback by identifying which of the
alternative interpretations of a user command is correct [WSM*18].

® Providing hints [MG19] show how a system can learns to understand regional
and directional hints from the user for a robot.
* Provide information Given a wrong answer to a question, users can enter facts

and rules to use as context when reasking the question, to produce the correct
answer [THLB18].

® Correcting bad answers Users can directly modify errors in their answers
[EMR*21].
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Natural Language Format

natural la

Formulati

Humans need to provide multiple possible feedback on output modifications:
h:Xx)Y— F,

where F,, represents the set of all m natural language feedbacks.

FBNET
Frozen
Base —— x —— Corrector by feedback predicted edit
model B noisy model G improved The feedback is if a | insert node ‘choose a
structure QA structure person is going to open | book to read’ before
(x, 1) a book, they need to | ‘open the book’
pe;igﬂz‘é: " choose one first
. The feedback is you | insert node ‘get the
task/input Memory 70 " .. - can’t open something | book out of the bag’ be-
M written to you’re not holding fore ‘open the book”

Fig. 7. The left shows the model B does not account for user feedback. FBNET maintains a memory M of corrective feedback, and searches for
feedback from prior queries with similar error intent as x using a retrieval function €2. x is then concatenated to the retrieved feedback to form the
input to the corrector model G. Users can also give new feedback which is added to M. [TMCY22]. The right shows multiple feedbacks for the
same (x, y).
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Components of natural language format

Key Components [TMCY22]:
®* Memory M As mentioned, the feedback is stored in a memory of key (x), value
(fb) pairs.
® Retrieval function 2 The retrieval function €2 matches a query key (x;) to a
similar x; in memory implicitly on the similarity of the errors e; and ¢;.

® Corrector model G The graph corrector model G generates an improved output
y given a noisy graph x and fb. This is done in a two-step process:
® learning to predict a graph edit operation y€ given x and 7b.
® using simple graph operations to apply y¢ to x to produce y.
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Examples of natural language format

Dr. Yaodong Yang

for the car

Error type | Input script x Feedback | Expected || Generated score
fb edit y* edit y©
EM | EMiypl EMige
missing step . after  a | insert insert 0 1 0
1. buy a video game person node node ‘get
2. alkyg the cashier makes a | “walk into  the
3. make the transaction transac- to  the || car’ after
4. get the receipt tion, they | car’ after || ‘make the
N quq video game into the car | 1o haad ‘get  the
6. get into the car to  their | receipt’
7. take xbox home
car
wrong step good remove remove 1 T T
1. make a bunch of cards plans node node
2. grab a pen shouldn’t | ‘pick up || ‘pick up
3. grab some paper include | the pen’ || the pen’
4. pick up a pen Tedundant
5. place the paper on the table steps
6. pick up the pen
7. write names on the cards
wrong order you reorder remove | 0 0 0
1. leave home and get in car wouldn't | edge node
2. remem. destination address | o0k for | between ook
3. look around for the car come- 7 leave || around
4. walk towards the car thing home and || for  the
5. open the car door you're get in || car
6. sit down in the car already car , look
7. put on the seatbelt with around

Fig. 8. Some examples of the natural language format [TMCY22].
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Natural Language Format

Application scenarios and characteristics of

Applicable scenarios: Robotics control, etc. Advantages:
® Richness Can provide rich and detailed information on the quality of model
outputs, allowing for more nuanced evaluation of model performance.
® Flexibility Can be customized to different evaluation scenarios, allowing for more
fine-grained evaluation of language models.
® Comprehensive Can provide a comprehensive evaluation of model performance,
covering various aspects.
Unsuitable scenarios: Legal, etc. Disadvantages:
® Lack of standardization Making it difficult to compare and aggregate feedback
from multiple sources.
¢ Time-consuming Feedback can be time-consuming to collect and analyze,
especially when a large number of model outputs are involved.
¢ Difficult to interpret Interpreting requiring expertise in natural language
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Other formats of human feedback

® Multiple dimensions Humans are asked to provide multi-aspect feedback,scoring
an output or ranking multiple outputs with respect to multiple dimensions
[GMT*22].
X xY —R?or F¢

® Post-editions Humans provide corrections to the output in the form of small
edits. Post-edition data has been used to directly improve models [DDL14] or
train automatic post edition systems that correct model mistakes [PNVvG16].

¢ Multidimensional Quality Metrics (MQM) There is multidimensional and
multimodal human feedback from images, language, and touch in the interaction
[LUB14] [AACT22].
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Summary of human feedback types
The choice of format has implications on the expressivity of the feedback, the ease of

its collection, and how we can use it to improve systems.

Input Output(s) Feedback Type
0.7 Score
A melhor comida do mundo é ~ The worst food in the world ~ worst’: major/accuracy MQM
a portuguesa. are Portuguese. ’are’: minor/fluency
‘worst” — “best’, "are’ — ’is”  Post-Edition
Artiﬁcia{ intelligence‘ha.? the Fluency:l 1 Multi-Aspect
potential to revolutionize X X Relevance: 0.7
. . . Al can change industries.
industries (...) but ethical o . B Natural
concerns need to be handled. Misses the ethical concerns. Language
A: People went to the ... X
A>B Ranking

Explain the moon landing

to a 6 year old B: The moon is a satellite...

Fig. 9. Example input and output for three tasks (machine translation, summarization, and instruction following) and possible different (example)

feedback that can be given [FML™23].
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Methods and Platforms

Considerations in Data Collection

There are multiple facets to consider when collecting human feedback data for a
generation task; a non-exhaustive list of axes along which data collection can vary is
presented below:

® Annotator expertise Annotators with relevant expertise in the domain or tasks
being evaluated can provide more reliable and informative feedback.

® Length of engagement Longer engagement times may lead to more thorough
and detailed feedback, but may also increase the risk of annotator fatigue and
errors.

e Collection method Common methods include crowdsourcing platforms, expert
review, and user surveys,with varying noise levels.
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Methods and Platforms

Considerations in Data Collection

® Collection platform Common platforms include Amazon Mechanical Turk,
Upwork, and Scale Al. It is important to ensure that the platform is user-friendly,
secure, and can handle the volume of data being collected.

® Annotator demographics The demographics of the annotators should also be
considered, as this can affect the diversity and representativeness of the feedback.
It is important to ensure that the annotator pool is diverse and inclusive,
reflecting a range of perspectives and experiences.

® Avoidance of bias Special care should be taken to avoid bias, such as gender,
racial, geographic, or cultural biases.
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Collection sources

The web is a prime potential sources of text data.Google's search index alone, as a
minimum estimate, comprises 100 petabytes [sea].
Moreover, Certain private datasets held by major corporations dwarf what is openly

available. For instance, WalMart generates a staggering 2.5 petabytes of data per hour
[Datb].

Qua Iity-fi rst © Dataloop
annotation platform

Create precise, accurate and pixel perfect annotations that are key
to quality data, using a cutting edge toolset.

AUTOMATE DISTRIBUTE COLLABORATE
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Collection Methods and Platforms

Examples of datasets analysis

Datasets for training GPT models:

°* WebText Used to train GPT-2.
°* OpenWebText WebText was replicated by the OpenWebText dataset.

Extracted all the URLs from the Reddit submissions dataset.
Used Facebook' s fastText to filter out non-English
Removed near duplicates.

End result is 38 GB of text.

[GGST20] analyzed toxicity of these two datasets:
2.1% of OpenWebText has toxicity score >= 50%
4.3% of WebText (from OpenAl) has toxicity score >= 50%

® News reliability correlates negatively with toxicity (Spearman p=0.35)

3% of OpenWebText comes from banned or quarantined subreddits.

Dr. Yaodong Yang Institute for Al, Peking University

Lecture 4: Fundamentals of Human Feedback / 58



Human dback Collection
0000 o

Methods and Platforms

Collection m ds

Data collection and processing of GPT-3 [Lia]
® Selected subset of Common Crawl that’ s similar to a reference dataset (WebText)
® Performed fuzzy deduplication (detect 13-gram overlap, remove window or documents if
occurred in <10 training documents), removing data from benchmark datasets.
® Expanded the diversity of the data sources (WebText2, Booksl, Books2, Wikipedia).

® During training, Common Crawl is downsampled (Common Crawl is 82% of the dataset,
but contributes only 60%)

Task and Dataset Collection method Platform Feedback Type
Language assistant [BJN+22] Explicit Upwork, MTurk Ranking
Language assistant [EZWJ23] Implicit Scraped from Reddit Ranking/Score

Summarization [SOW+20] Explicit Upwork Ranking
Translation [GCS23] Explicit Pro translation workflow MQM, DA
Summarization (TAC-2008,2009) Explicit N/A Score

Table. 1. Summary of the existing human feedback datasets and their collection methods, which vary along several dimensions [FMLJr 23].
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ocumentation datasets
It is necessary to establish documents for the datasets for two purposes:
® Dataset creators Reflect on decisions, potential harms (e.g., social biases) when

creating the dataset.
e Dataset consumers Know when the dataset can and can’ t be used.

§ IIII
0.0 -
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Fig. 11. Pile component[GBB+20].
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Collection Methods and Platforms

Main contents included in documents

e Dataset description Describe the main content that a dataset should include
[Lia].
® Motivation (For what scenarios, tasks, algorithms, etc.)
Uses (Available and Unavailable Tasks)
Collection process (Collectors, collection methods, platforms)
Composition (the main instances included, e.g., documents, photos.)
Maintenance (Update, plan, maintain personnel)
Distribution (Distribution, type, pattern)
® Data statements Data statistical analysis:
e Curation rationale (what' s included?)
® Language variety (schema)
® Speaker demographic (age, gender, race/ethnicity, etc.)
® Annotator demographic (age, gender, race/ethnicity, etc.)
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Bias in data collection

Bias in judgment can be a critical issue to consider when collecting data for training
large language models.
® Annotator bias Can introduce subjective judgments into the data collection
process, potentially skewing the results.
e Criterias Establishing clear annotation guidelines and criteria can help minimize
the impact of individual biases on the collected data.
® Annotator diversity Diversity is important in avoiding bias, as it can provide a
range of perspectives and insights that can help identify and correct any biases in
the data.
® Quality control measures such as inter-annotator agreement and blind reviews,
can help detect and mitigate bias in the collected data.

Following the above four points can reduce data bias and improve the performances of
LLMs.
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Ethical Considerations
city i datasets

Ethical considerations are important when collecting data for training large language
models, as these data may contain sensitive or personal information, and toxic data
can lead to the insecurity of language models.

Toxicity

0.44
- l

[ 0.34

Political Professions Genders Countries Religions ~Sexual
o orientations

Entity category
Fig. 12. The right shows that ChatGPT is consistently highly toxic, with toxicity over 0.5 across all entity categories considered when baseline

personas like “a good person” and “a bad person” are assigned to it.The right shows that the toxicity in utterances about different countries when
ChatGPT is assigned the personas of dictators [DMR™23].
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Safe data collection

To ensure ethicality, data collection should prioritize the following three points.
® Informed consent must be obtained from individuals whose data is being collected,
particularly if that data is personally identifiable.
® Techniques such as anonymization and de-identification should be employed to
protect individual privacy and minimize potential harm.
® Data should be obtained and used in a legally and ethically responsible manner,
taking into account any possible risks or harms.
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Modeling human feedback from data

We can provide low-cost feedback by modeling human feedback, which helps expand
the technology of relying on feedback. Given a feedback function h:

h: X xWV X xY,—=>F
we want to learn a parametric feedback model with parameters ¢:
he: X xY =R
We hope that 71¢ can be consistent with the h:

Ox = arg;ninEx,n o+ s Yn~Ds [E(d))]

L(¢p) = loss <i1¢ (x,y1),- ,h (x,ylz,,))

Dr. Yaodong Yang Institute for Al, Peking University
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Modeling human feedback from data
For example, if the feedback function we are trying to model is also numerical format:
h: XxY—R
then the loss can just be any standard regression loss, such as:
. 2

£(6) = (holxy) = hlx))
If the feedback function we are trying to model is ranking-based format:

h: XXV X xVp— Sy
then the loss can just be a ranking loss such as:

L(¢) =log (U <i7¢> 0, y41) — g (X,Y—1)>>

where sample y,1 was preferred to y_.
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Improve generation through feedback models

After training a feedback model, we can use it to improve generation almost exactly as
we would use human feedback.
If the feedback model outputs numerical feedback:

he: X xY =R

To avoid overfitting to imperfect feedback models, a regularization term R is often
introduced. We can define the optimization problem:

6* = arg maxEy_p [B¢ (x, M(x)) — BR(0)
0

where R is a KL regularization term [ZSW'19]:

R(6) = log [Pa(y | x)/Po,i.(y | x)]
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Summary and Outlook

In this lecture, we covered the fundamentals of human feedback:
® Formulations of human feedback.
® Data collection.
® Modeling human feedback and improving generation.
In the next lecture, we will introduce how to learn through human feedback:
® Feedback-based Imitation Learning

® Feedback-based Direct Preference Optimization
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