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Reinforcement Learning in Continu tion Spaces

Introduction

Reinforcement Learning (RL) methods are typically designed for discrete action spaces.
However, many real-world problems, such as robotic control or autonomous driving,
involve continuous action spaces.

Challenges

Applying RL to continuous action spaces presents several challenges, including:
® |nfinite possible actions at each state,
® The need for function approximation, and

® The exploration-exploitation trade-off.
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Continuous Action

Discretization Approach

One way to handle continuous action spaces is to discretize them into a finite set of
actions. However, this approach has limitations:

® Curse of dimensionality: The number of actions grows exponentially with the
number of dimensions.

® Loss of granularity: Discretization may lead to inaccurate representations of the
action space.

For a 2D robotic arm with continuous joint angles, discretization would create a grid of
possible actions, resulting in a limited set of feasible movements.
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Policy Parameterization

Policy Parameterization

Another approach is to parameterize the policy directly. The policy 7(a|s;0) is a
parametric function of the state s and parameters 6.

Parameterization allows for:

® Flexibility: The policy can represent a wide range of continuous functions.
® Smoothness: The policy can produce smooth actions in the continuous space.

® Policy Gradients: Policy gradient methods can optimize the parameters directly.
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Actor-Critic Method

Actor-Critic Approach

The Actor-Critic method [GBLB12] combines an actor (policy) network and a critic
(value) network.

The Actor-Critic approach offers:
® Policy Optimization: The actor network optimizes the policy parameters.
® Value Estimation: The critic network estimates the value function to guide the
actor's updates.
e Stability: Actor-Critic can improve sample efficiency and reduce variance in the
learning process.
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Generalized advantage estimation

Introduction

® Generalized Advantage Estimation (GAE) [SML™15] is a technique used in
reinforcement learning to estimate the advantages of actions in a state.

® |t is an extension of the advantage estimation concept, aiming to improve the
stability and sample efficiency of policy gradient methods.
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Generalized advantage estimation

Definition

¢ The advantage function measures how much better (or worse) an action is
compared to the average action in a given state.

® |t plays a crucial role in policy gradient methods by guiding the policy updates
towards better actions.

® One common way to estimate advantages is using the formula:

Advantage(s, a) ny re | — V(s)

where s is the state, a is the action, -y is the discount factor, r; is the reward at
time step t, and V/(s) is the estimated state-value function.

Dr. Yaodong Yang Institute for Al, Peking University

in Reinforcement Learning



Prior Knowledge
000800

G lized advantage estimation

Definition

® Accurate advantage estimation can be challenging due to the high variance in
rewards and the difficulty of approximating the state-value function.

® Traditional advantage estimation can lead to unstable policy updates and slow
convergence in complex environments.

® GAE addresses these challenges by introducing a discount factor )\ to balance
the trade-off between bias and variance in advantage estimation.
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Generalized advantage estimation

Formulation

® GAE computes a weighted sum of advantages over multiple time steps, giving
more importance to recent rewards.

® |t is defined as:

s'

—t
GAE(s,a) = 3" (71)d¢s
|

i
=)

where 0111 = repr + YV (St4141) — V(St41) is the temporal difference error at time
step t + /.

® The hyperparameter A controls the trade-off between bias and variance. For
A = 0, GAE reduces to regular advantage estimation, while higher values
introduce more bias but lower variance.
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Generalized advantage estimation

Relationship of GAE with MC and TD Methods

Monte Carlo (MC)

MC methods estimate the value function and advantages by sampling full trajectories
and computing the returns from the sampled trajectories.

Temporal Difference (TD)
TD methods estimate the value function and advantages by bootstrapping from the

next time step’s value function estimate.

GAE

GAE combines features of both MC and TD methods, using a discount factor A to
control the trade-off between bias and variance in advantage estimation.
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Application of Deep Reinforcement Learning

¢ Deep Reinforcement Learning (DRL) has found applications in various fields due
to its ability to learn from raw sensory input.

It has been successfully applied to solve complex tasks and achieve impressive
performance in different domains.

ACTION ‘
_STATE
More
. FewaRs 1000

Fig. 1. The network takes the state—a stack of greyscale frames from the video game—and processes it with convolutional and fully connected
layers. At the final layer, the network outputs a discrete action, which corresponds to one of the possible control inputs for the game. [ADBB17]

Dr. Yaodong Yan Institute for Al, Peking University




Prior Knowledge
00000

Dee nforcement Learn

Example: Playing Video Games

e State: Raw pixel images.

® Action: Control game moves, actions,
and strategies.

¢ Reward: Points earned for game

objectives achieved, penalties for
losing or making mistakes.

Fig. 2. DreamerV3 [HPBL23] is the first algorithm that collects diamonds
in Minecraft without human demonstrations or manually-crafted curricula,
which poses a big exploration challenge.
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Dee nforcem

e State: Joint positions, velocities, and
sensor data.

® Action: Control robotic arm
movements and manipulate objects.

® Reward: Positive for successful tasks,
negative for collisions or errors.

Fig. 3. The Pick and Place experiment. The robot has to pick up the
yellow cylinder and bring it in a random place. [FTCG21]
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Deep Reinforcement Learn

e State: Sensor inputs like camera
images, LIDAR, and GPS data.

e Action: Control steering, acceleration,
and braking.

® Reward: Positive for safe driving,
reaching the destination, negative for
collisions or rule violations.

Fig. 4. MetaDrive is a new driving simulation platform which can generate
an infinite number of diverse driving scenarios from both the procedural
generation and the real data importing. [LPF122]
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Policy Gradient

Introduction to Policy Gradient Methods

Policy Gradient [SMSM99] Methods are a class of reinforcement learning algorithms

that directly optimize the policy’s parameters to find the best policy for the task at
hand.

Key Idea

The main idea behind policy gradient methods is to use gradient ascent to iteratively
improve the policy by maximizing the expected return.
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Policy Gradient

Policy Gradient Theorem

Policy Gradient Theorem

The policy gradient theorem expresses the gradient of the expected return with respect
to the policy’'s parameters 0 as:

N T,
1
VpJ(0) o N ,,z:: z:: T")Vlogps(ai|s{),

where:
e J(0) is the objective function representing the expected return,

® [N is the number of sampled trajectories and T, is the max length of each
trajectory,

® R is the total reward of a trajectory 7.

—
Dr. Yaodong Yang Institute for Al, Peking University

Lecture 3: cy Optimization in Reinforcement Learning



On-policy algorithms
000e00000

Policy Gradient

Policy Gradient Theorem (Contd.)

Derivation Step 1

Starting with the expression for the objective function J(6):

J(G) - TNpg Z R p9

we take the gradient with respect to 6 to find VgJ(0).
Derivation Step 2

Using the identity Vgpy(7) = po(7) Vg;’((’T)) = py(7)Vylogpy(T), we rewrite the
gradient as:

VoJ(0) =D R(r)ps(T)Vologps (7).
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Policy Gradient

Policy Gradient Theorem (Contd.)

Derivation Step 3

Using Monte Carlo method to sample many trajectories, we have:

Vod (6 ") Vologpy(T").

Final Result

The final result of the derivation is the policy gradient theorem:

N
1
Vod(0) ~ & DD R(r")Viogps(atlsf),
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Policy Gradient

Actor-Critic Update

® Actor-Critic is a popular policy gradient algorithm that combines the advantages
of both policy-based and value-based methods.

® It maintains an actor (policy) and a critic (value function) to estimate the
state-value function V/(s).

® The policy is updated using the advantage function A(s,a) = Q(s,a) — V(s),
where Q(s, a) is the action-value function.

® The policy update formula is as follows:
Onew (= eold +aVy 10%”0(3\5) : A(Sa a)

where « is the learning rate.
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Related Algorithms

® There are several variations of policy gradient algorithms, including:
® REINFORCE (Monte-Carlo Policy Gradient)

Actor-Critic

Proximal Policy Optimization (PPO)

Trust Region Policy Optimization (TRPO)

etc.

® Each algorithm has its strengths and weaknesses, and the choice of algorithm
depends on the specific problem and requirements.

® Many modern RL libraries provide implementations of these algorithms, making it
easier to experiment and apply them to various tasks.
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Example: Cartpole Environment

Let’s consider the classic Cartpole environment, where the agent needs to balance
a pole on a moving cart.

State: s = (x, x,0, 9), representing cart position, cart velocity, pole angle, and
pole angular velocity, respectively.

Action: a € {—1, 1}, indicating left or rightward force applied to the cart.

® Reward: r =1 for each time step the pole remains upright, else r = 0.

Objective: Maximize the expected cumulative reward over episodes.

Dr. Yaodong Yang Institute for Al, Peking University
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Comparison of Policy Gradient Algorithms

Algorithm Advantages Disadvantages Example
REINFORCE Simple High variance Cartpole
PPO Efficient Hyperparameter Atari Games
sensitivity
TRPO Guaranteed im- Computationally Robotics
provement expensive
DDPG Continuous ac- Overestimation Robotic
tion bias
TD3 Stable Hyperparameter Robotic
tuning
SAC Exploration Entropy tempera- Robotic
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timization

Motivation for Importance Sampling

® In reinforcement learning, estimating expected values under different policies is
challenging.

® In Policy Gradient methods, the agent learns from diverse trajectories gathered by
a behavior policy.

® Importance Sampling allows us to reuse this data and estimate the value under a
different policy (target policy).

Institute for Al, Peking University
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Trust Region Policy Optimization

Importance Sampling in Policy Gradient

® Policy Gradient methods use the following update rule for the policy parameter 6:

0« 6+ OéVgJ(ﬂ'g)
where « is the learning rate and J(mp) is the objective function (e.g., expected
return).

® However, directly using samples collected from a behavior policy in the gradient
estimation can lead to high variance and slow convergence.

® Importance Sampling corrects this by reweighting the samples using the
Importance Sampling ratio.
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Trust Region Policy Optimization

Importance Sampling Ratio

® The Importance Sampling Ratio (ISR) is defined as:

o(T)
ISR(, Ooid, T) o (7)
where T represents a trajectory sampled from the behavior policy, mg(7) is the
probability of obtaining trajectory 7 under the target policy 7y, and 7y, (7) is the
probability under the old policy my_,.
® The objective function with Importance Sampling is:

N
~ 1
J(mo) = & ; ISR(0, foa, 77) - R(73)
where N is the number of trajectories, and R(7;) is the return obtained from
trajectory ;.

Dr. Yaodong Yang Institute for Al, Peking University

Lecture 3: Policy Optimization in Reinforcement Learning



On-policy algorithms
[e]e]e]e] lelele)

Trust Region Policy Optim

Importance Sampling and KL Divergence

® In reinforcement learning, Importance Sampling allows us to reuse data collected
from a behavior policy to estimate values under a different target policy.

® The KL Divergence term ensures that policy updates do not deviate too far from
the previous policy.
® When the KL Divergence becomes too large, it can lead to several issues:
® Destructive Updates: Drastic policy changes can destabilize learning and lead to
divergent behavior.
® Sample Inefficiency: Large KL Divergence can cause the new policy to deviate
significantly from the old policy, resulting in inefficient use of previously collected

data.
® Stagnation: A large KL Divergence can hinder exploration, causing the agent to get

stuck in local optima.
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Trust Region Policy Optimization (TRPO)

® TRPO is a powerful extension of Policy Gradient with additional emphasis on the
trust region constraint.

® TRPO directly limits the KL Divergence between the new and old policies.
® TRPOQO'’s objective function is as follows:
Tk+1 = argmax J(m) s.t. Dgp(m,mi) <4
wellg

where KLiaget is a pre-defined KL Divergence threshold.
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Trust Region Policy Optimization

Trust Region Policy Optimization (TRPO)

® TRPO ensures that the policy update stays within the trust region defined by
KI—target-

® To achieve this, TRPO solves an optimization problem subject to a KL Divergence
constraint:

Onew = argmax | J(mg) — B - KL(mg, 7p,,,)
0

subject to KL(mp, mg,,) < KLtarget

® TRPO usually requires a complex optimization process, such as conjugate
gradient, to find the policy update within the trust region.
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Trust Region Policy Optimization

Trust Region Policy Optimization (TRPO)

e TRPO is computationally more expensive than PPO because of the constrained
optimization.

® However, TRPO typically provides more stable and conservative policy updates.

® The trust region constraint in TRPO prevents large policy changes and helps
avoid policy collapses during training.

® TRPO has been widely used in various domains and has shown promising results
in complex reinforcement learning tasks.
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Proximal Policy Optimization

Optimization Objective

The objective function of Proximal Policy Optimization (PPQ) [SWD"17] is to find a
policy that maximizes the expected reward while ensuring that policy updates are not
too far from the original policy.

Thtl = argggI}; J(m) st. Dgi(m,mg) <9d
where:
e [Ig C II denotes the set of parameterized policies with parameters 6.
e J(m) is the expected reward, which is the objective function to maximize.

® Dy is the KL distance, and ¢ is a hyperparameter that controls the trust region
constraint.
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Proximal Policy Optimization

PPO-Penalty

PPO-Penalty modifies the objective function of Proximal Policy Optimization (PPO)
to handle constrained optimization problems:

[ mo(als) ,

g [ UL (5, 2) — 5Dsalri (| 9ol | s>]]

[%

~

Ax(s, a) is the Generalized Advantage Estimation (GAE) version of the advantage.

We compute d = [ [KL[mg,,(- | 5), m9(- | 5)]] to measure the divergence between
the old and updated policies.

If d < diarg/1.5, we decrease 3 by dividing it by 2.
If d > diarg x 1.5, we increase /3 by multiplying it by 2.

The updated 5 is then used for the next policy update.
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Proximal Policy Optimization

PPO-Clip

Let r(@) denote the probability ratio between the new and old policies:

mo(a|s)

= @]9

The PPO-Clip surrogate objective function is given by:
J(r) =E [mm (r(G)AW(s, a), clip(r(0),1 — £, 1 + £)Ax(s, a))}

where:
° /2\7,(5, a) is the Generalized Advantage Estimation (GAE) at state s and action a.

® ¢ is a hyperparameter that determines the clipping range.
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Proximal Policy Optimization

Entropy Coefficient

® The entropy coefficient « is a hyperparameter that scales the entropy term in the
objective function.

® The objective function with the entropy coefficient is defined as:
J(m)=E|) w(als)Ar(s,a) +a Y m(a]s)logn(als)
a a

where A (s, a) is the GAE advantage function, and 7(a | s) is the probability of
taking action a in state s according to the policy.
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Proximal Policy Optimi:

Effect of Entropy Coefficient

® A higher entropy coefficient encourages more exploration by increasing the
importance of the entropy term in the objective function.

® This promotes a more stochastic policy that explores different actions and states
to discover better strategies.

® A lower entropy coefficient promotes exploitation by making the policy more
deterministic, focusing on the currently learned optimal actions.
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© Off-policy algorithms
Deep Deterministic Policy Gradients (DDPG)
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istic Policy Gradients (DDPG)

Introduction

® DDPG [LHPT15] is an actor-critic algorithm for continuous action spaces in
reinforcement learning.

® |t combines the strengths of deep neural networks with policy gradients to achieve
high-performance policy optimization.

® Actor: Approximates the optimal policy deterministically.

e Critic: Evaluates the actor's action using Q-values.

Actor Critic

aactor ecritic
Policy 7ractor(s; eactor) Q-Function chitic(sa a, Hcritic)
Deterministic Policy Q-value Approximation

Dr. Yaodong Yang Institute for Al, Peking University
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Deep Deterministic Policy Gradients (DDPG)

Actor Update: Maximize the Q-value estimated by the critic network.

Oactor argimax chitic(57 7Tactor(5§ 9actor)§ ecritic)

actor

Critic Update: Minimize the Mean Squared Bellman Error.

Ocritic < argmin & [52]

critic

0= chitic(sa a; ecritic) - Qtarget

Qtarget =r+ 'Vchitic(sla 7Tactor(5,§ eactor); 9critic)
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Twin Delayed Deep Deterministic Policy Gradient (TD3)

Dr. Yaodong Yang Institute for Al, Peking University

Lecture 3: Policy Optimization in Reinforceme



Off-policy algorithms
[o] lele}

Twin Delayed Deep Deterministic Policy Gradient (TD3)

Twin Critic Architecture

e TD3 [FHM18] is an off-policy algorithm for continuous action spaces in
reinforcement learning.

® |t is an extension of DDPG and addresses the overestimation bias issue of Q-value
estimates.

® TD3 utilizes twin critics and target policy smoothing to improve stability and
convergence.

e Twin Critic: Utilizes two Q-value approximators to mitigate overestimation bias.

Twin Critic Twin Critic
Qi (s, a;0q1) Q2(s, a3 0q2)
Q-value Approximation | Q-value Approximation

Dr. Yaodong Yang Institute for Al, Peking University
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Twin Delayed Deep Deterministic Policy Gradient (TD3)

Target Policy Smoothing

Target Policy Smoothing: Adds noise to the target policy to prevent policy
overfitting.

3 = Tearget(s) + clip(N(0,0), —c, ¢)

® Tiarget(S'): Target policy action at the next state.
e clip(-): Clips the noise within a predefined range [—c, c|.

® o: Noise standard deviation.

Dr. Yaodong Yang Institute for Al, Peking University
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Twin Delayed Deep Deterministic Policy Gradient (TD3)

Overview

Actor-Critic Updates:
Actor Update: Maximize the Q-value estimated by the critic network.

Hactor < argmax chitic(57 7Tactor(s; eactor)Q ecritic)

actor

Critic Update: Minimize the Mean Squared Bellman Error.

Ocritic < argminE [52]

ecritic

0= chitic(sa a; ecritic) - Qtarget

Qtarget =r+ ’Yirl‘{n2Qéritic(5/a 7Tactor(5,§ Bactor); (I:ritic)
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Soft Actor-Critic
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e SAC [HZAL18] is an off-policy algorithm for both discrete and continuous action
spaces in reinforcement learning.

® |t combines actor-critic architecture with the principle of entropy maximization to
improve exploration and robustness.

® SAC utilizes the soft Bellman backup to maintain a stochastic policy.

Dr. Yaodong Yan
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Entropy Regularization: Incorporates entropy term to encourage exploration.

Objective:  maxE,r..., [Qeritic(S; @) — alog Tactor(als)]

actor

® Tactor(als): Policy distribution over actions given state s.
® Quritic(s, a): Q-value estimate for state-action pair (s, a).

® «: Entropy temperature, controls the trade-off between exploration and
exploitation.
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Soft Actor-Critic

Soft Bellman Backup

Soft Bellman Backup: Incorporates the maximum entropy principle into the Bellman
backup.

Qtarget =r+ '7(1.'2{“2 éritic(sla 7"-actor(5/§ eactor); eéritic) —alog 7ractor(a,|5/))

® r: Immediate reward for taking action a in state s.
e ~: Discount factor.

® p(-|s,a): Next state distribution given current state-action pair (s, a).
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Comparison of DDPG, T

Off-policy algorithms
(o] Jo}

Algorithm DDPG TD3 SAC
Update Rule Actor-Critic Actor-Two-Criic Soft-Actor-Critic
Stability Unstable, overestimation bias More stable with twin critics Stable with entropy regularization

Sample Efficiency

Moderate, more samples needed

Improved with target policy smoothing

Efficient, high sample efficiency

Exploration

Limited, deterministic policy

Better with target policy smoothing

Effective with stochastic policy

Characteristics

Off-policy, model-free, continuous action space

Table. 2. This table compares DDPG, TD3, and SAC with columns for update rule, stability, sample efficiency, exploration, and characteristics.
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Summary

e DDPG: DDPG suffers from instability due to overestimation bias in Q-value
updates. It requires more samples to achieve good performance, and its
deterministic policy limits exploration capabilities.

e TD3: TD3 addresses the overestimation bias by using twin critics and achieves
better stability. It also improves sample efficiency through target policy
smoothing, and its exploration is enhanced compared to DDPG.

® SAC: SAC maintains stability with entropy regularization, leading to a more
robust training process. It achieves high sample efficiency, making it more
data-efficient. The stochastic policy and entropy term in the objective function
allow effective exploration, improving performance in complex environments.
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Summary and Outlook

In this lecture, we covered traditional reinforcement learning algorithms:
® Prior knowledge.
¢ On-policy algorithms.
¢ Off-policy algorithms.

In the next lecture, we will introduce:

® Fundamentals of Human Feedback
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Thanks!
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